AWS Machine Learning Blog

Some Thoughts on Facial Recognition Legislation

Facial recognition technology significantly reduces the amount of time it takes to identify people or objects in photos and video. This makes it a powerful tool for business purposes, but just as importantly, for law enforcement and government agencies to catch criminals, prevent crime, and find missing people. We’ve already seen the technology used to […]

Read More

Bridgeman Images uses Amazon Translate to establish their business globally

Many businesses aspire to expand globally to reach new customer and accelerate growth. For Bridgeman Images, this meant engaging customers who spoke languages other than English. They needed a scalable solution to overcoming the language barrier since having everything translated manually wasn’t fast enough or cost efficient. Using Amazon Translate, they reduced the time needed […]

Read More

Annotate data for less with Amazon SageMaker Ground Truth and automated data labeling

With Amazon SageMaker Ground Truth, you can easily and inexpensively build more accurately labeled machine learning datasets. To decrease labeling costs, use Ground Truth machine learning to choose “difficult” images that require human annotation and “easy” images that can be automatically labeled with machine learning. This post explains how automated data labeling works and how […]

Read More

DXC Technology automates triage of support tickets using AWS machine learning

DXC Technology is a global IT service leader providing end-to-end services on Digital Transformation to businesses and governments. They also provide service management to their clients on-premises and in the cloud.  The incident tickets raised as part of the process need to be resolved quickly to meet their service level agreements (SLA).  DXC has  goals […]

Read More

Deploy trained Keras or TensorFlow models using Amazon SageMaker

Amazon SageMaker makes it easier for any developer or data scientist to build, train, and deploy machine learning (ML) models. While it’s designed to alleviate the undifferentiated heavy lifting from the full life cycle of ML models, Amazon SageMaker’s capabilities can also be used independently of one another; that is, models trained in Amazon SageMaker […]

Read More

Thoughts on Recent Research Paper and Associated Article on Amazon Rekognition

A research paper and associated article published yesterday made claims about the accuracy of Amazon Rekognition. We welcome feedback, and indeed get feedback from folks all the time, but this research paper and article are misleading and draw false conclusions. This blog post shares details which we hope will help clarify several ‎misperceptions and inaccuracies. […]

Read More

Deploy TensorFlow models with Amazon Elastic Inference using a flexible new Python API available in EI-enabled TensorFlow 1.12

Amazon Elastic Inference (EI) now supports the latest version of TensorFlow­–1.12. It provides EIPredictor, a new easy-to-use Python API function for deploying TensorFlow models using EI accelerators. You can now use this new Python API function within your inference scripts as an alternative to using TensorFlow Serving when running TensorFlow models with EI. EIPredictor allows […]

Read More

AWS launches open source Neo-AI project  to accelerate ML deployments on edge devices

 At re:Invent 2018, we announced Amazon SageMaker Neo, a new machine learning feature that you can use to train a machine learning model once and then run it anywhere in the cloud and at the edge. Today, we are releasing the code as the open source Neo-AI project under the Apache Software License. This release […]

Read More

Identifying and working with sensitive healthcare data with Amazon Comprehend Medical

At AWS, I regularly speak with AWS customers and AWS Partner Network (APN) partners about how they are using technology to transform human health. These companies often generate large amounts of health data that they use in a variety of applications, such as population health management and electronic health records. Developers need to find ways to use […]

Read More

Extract and visualize clinical entities using Amazon Comprehend Medical

Amazon Comprehend Medical is a new HIPAA-eligible service that uses machine learning (ML) to extract medical information with high accuracy. This reduces the cost, time, and effort of processing large amounts of unstructured medical text. You can extract entities and relationships like medication, diagnosis, and dosage, and you can also extract protected health information (PHI). […]

Read More