AWS Machine Learning Blog

Tag: Amazon Sagemaker

Amazon SageMaker BlazingText: Parallelizing Word2Vec on Multiple CPUs or GPUs

by Saurabh Gupta and Vineet Khare | on | in SageMaker | Permalink | Comments |  Share

Today we’re launching Amazon SageMaker BlazingText as the latest built-in algorithm for Amazon SageMaker. BlazingText is an unsupervised learning algorithm for generating Word2Vec embeddings. These are dense vector representations of words in large corpora. We’re excited to make BlazingText, the fastest implementation of Word2Vec, available to Amazon SageMaker users on: Single CPU instances (like the […]

Read More

AWS KMS-based Encryption Is Now Available for Training and Hosting in Amazon SageMaker

by Kumar Venkateswar | on | in SageMaker | Permalink | Comments |  Share

Amazon SageMaker uses throwaway keys, also called transient keys, to encrypt the ML General Purpose storage volumes attached to training and hosting EC2 instances. Because these keys are used only to encrypt the ML storage volumes and are then immediately discarded, the volumes can safely be used to store confidential data. Volumes can be accessed […]

Read More

Making neural nets uncool again – AWS style

by Jeremy Howard and Joseph Spisak | on | in SageMaker | Permalink | Comments |  Share

Just as the goal of Amazon AI is to democratize machine learning with the development of platforms such as Amazon SageMaker, the goal of fast.ai is to level the educational playing field so that anyone can pick up machine learning and be productive. The fast.ai tagline is “Making neural nets uncool again.” This is not a play to decrease the popularity of deep neural networks, but instead to broaden their appeal and accessibility beyond the academic elites who have dominated the research in this area.

Read More

Now available in Amazon SageMaker: DeepAR algorithm for more accurate time series forecasting

by Tim Januschowski, David Arpin, David Salinas, Valentin Flunkert, Jan Gasthaus, Lorenzo Stella, and Paul Vazquez | on | in SageMaker | Permalink | Comments |  Share

Today we are launching Amazon SageMaker DeepAR as the latest built-in algorithm for Amazon SageMaker. DeepAR is a supervised learning algorithm for time series forecasting that uses recurrent neural networks (RNN) to produce both point and probabilistic forecasts. We’re excited to give developers access to this scalable, highly accurate forecasting algorithm that drives mission-critical decisions within Amazon. Just as […]

Read More

Build Amazon SageMaker notebooks backed by Spark in Amazon EMR

Introduced at AWS re:Invent in 2017, Amazon SageMaker provides a fully managed service for data science and machine learning workflows. One of the important parts of Amazon SageMaker is the powerful Jupyter notebook interface, which can be used to build models. You can enhance the Amazon SageMaker capabilities by connecting the notebook instance to an […]

Read More