亚马逊AWS官方博客

AWS Team

Author: AWS Team

在 AWS 上扩展 Synopsys Proteus 光学近似修正

Synopsys 和 AWS 意识到随着半导体技术的进步不断推高每个芯片的复杂性,客户数据中心面临着满足日益增长的资源需求的挑战。 OPC 很适合利用 AWS 云的无限计算规模,因为计算可以并行化。Synopsys 和 AWS 决定启动一项联合调查,以确定 Synopsys Preteus 如何在 AWS 上扩展。

规划具有 Hot-Warm 架构的 Amazon Elasticsearch Service 集群

Elasticsearch近几年的热度持续增长,有着非常广泛的应用场景,而AWS作为云计算的领导者,不可或缺地提供托管的Elasticsearch服务 — Amazon Elasticsearch Service(简称AES),在今年的5月份,AWS正式上线了创新性的Ultrawarm节点,使得AES支持业界流行的Hot-Warm存储架构,整体存储成本大大降低,为用户提供更好的性价比。本文将向您介绍如何规划具有Hot-Warm架构的AES集群。

使用 Deep Graph Library 训练知识图谱嵌入

知识图谱嵌入KGE则为大家提供一种强大的方法,可以对特定节点上的语义与局部结构信息进行编码,您也可以将它们作为机器学习与深度学习模型的输入。DGL-KE支持多种流行嵌入模型,并能够让您通过CPU或GPU的大规模训练得到嵌入结果,训练速度是其他同类技术的2到5倍。

无代码机器学习:AutoGluon、Amazon SageMaker 与 AWS Lambda 合力加持 AutoML

在本文中,我们介绍了如何在无需编写任何代码的前提下,实现ML模型的训练与推理预测。AutoGluon、Amazon SageMaker以及AWS Lambda的密切配合最终让这一看似不可能的任务成为现实。大家可以使用本文中的示例无代码管道实现ML功能,整个过程轻松便捷,不需要任何编程或数据科学方面的专业知识。