Usamos cookies essenciais e ferramentas semelhantes que são necessárias para fornecer nosso site e serviços. Usamos cookies de desempenho para coletar estatísticas anônimas, para que possamos entender como os clientes usam nosso site e fazer as devidas melhorias. Cookies essenciais não podem ser desativados, mas você pode clicar em “Personalizar” ou “Recusar” para recusar cookies de desempenho.
Se você concordar, a AWS e terceiros aprovados também usarão cookies para fornecer recursos úteis do site, lembrar suas preferências e exibir conteúdo relevante, incluindo publicidade relevante. Para aceitar ou recusar todos os cookies não essenciais, clique em “Aceitar” ou “Recusar”. Para fazer escolhas mais detalhadas, clique em “Personalizar”.
Cookies essenciais são necessários para fornecer nosso site e serviços e não podem ser desativados. Geralmente, eles são definidos em resposta às suas ações no site, como definir suas preferências de privacidade, fazer login ou preencher formulários.
Os cookies de desempenho fornecem estatísticas anônimas sobre como os clientes navegam em nosso site, para que possamos melhorar a experiência e o desempenho do site. Terceiros aprovados podem realizar análises em nosso nome, mas não podem usar os dados para seus próprios propósitos.
Cookies funcionais nos ajudam a fornecer recursos úteis do site, lembrar suas preferências e exibir conteúdo relevante. Terceiros aprovados podem definir esses cookies para fornecer determinados recursos do site. Se você não permitir esses cookies, alguns ou todos esses serviços talvez não funcionem corretamente.
Cookies de publicidade podem ser configurados em nosso site por nós ou nossos parceiros de publicidade e nos ajudar a distribuir conteúdo de marketing relevante. Se você não permitir esses cookies, receberá publicidade menos relevante.
Bloquear alguns tipos de cookies pode afetar sua experiência em nossos sites. Você pode alterar suas preferências de cookies a qualquer momento, clicando em Preferências de cookies no rodapé deste site. Para saber mais sobre como nós e terceiros aprovados usamos cookies em nossos sites, leia nosso Aviso sobre cookies da AWS.
Exibimos anúncios relevantes aos seus interesses nos sites da AWS e em outras propriedades, incluindo publicidade comportamental em vários contextos. A publicidade comportamental entre contextos usa dados de um site ou aplicação para anunciar para você no site ou aplicação de outra empresa.
Para não permitir a publicidade comportamental entre contextos da AWS baseada em cookies ou tecnologias semelhantes, selecione “Não permitir” e “Salvar opções de privacidade” abaixo ou acesse um site da AWS com um sinal de recusa legalmente reconhecido habilitado, como o Controle Global de Privacidade. Se você excluir seus cookies ou visitar este site usando um navegador ou dispositivo diferente, precisará fazer sua seleção novamente. Para obter mais informações sobre cookies e como os usamos, leia o Aviso sobre cookies da AWS.
Para não permitir todas as outras propagandas comportamentais entre contextos da AWS, preencha este formulário por e-mail.
Para obter mais informações sobre como a AWS lida com suas informações, leia a Notificação de Privacidade da AWS.
No momento, só armazenaremos cookies essenciais, pois não foi possível salvar suas preferências.
Se você quiser alterá-las, tente novamente mais tarde usando o link no rodapé do Console da AWS ou entre em contato com o suporte se o problema persistir.
Learn how to utilize Amazon Bedrock and Amazon Textract to extract and process information from unstructured documents.
Learn how to deploy a sample containerized application on a Nginx server using AWS App Runner.
Learn how to build and deploy a React web application with user authentication, a database, and storage using AWS Amplify.
Learn how to use AWS Amplify to build a serverless web application powered by Generative AI using Amazon Bedrock and the Claude 3 Sonnet foundation model.
Learn how to build and host a full-stack React app with AWS Amplify, featuring authentication, data, and serverless functions.
Learn how to configure and connect to Amazon Aurora Serverless v2.
Learn how to use Amazon SageMaker Canvas to build machine learning (ML) models and generate accurate predictions without writing a single line of code.
Learn how to set up your AWS account and development environment. This will allow you to interact with your AWS account and provision any resources you need for building a system programmatically.
Learn to build a continuous delivery pipeline for a simple web application using AWS CodeBuild and AWS CodePipeline.
Learn how to replicate objects already existing in your buckets within the same AWS Region or across different AWS Regions with Amazon Simple Storage Service (Amazon S3) Batch Replication.
In this tutorial, you learn and experiment with machine learning using Amazon SageMaker Studio Lab, a no-setup, free development environment.
In this tutorial, you’ll learn how to use Amazon SageMaker to train, a machine learning (ML) model using the AWS Trainium instances.
Learn how to publish a .NET application on a Windows Server 2022 instance in Amazon Lightsail.
Learn how to use Amazon SageMaker geospatial capabilities to access readily available geospatial data, make ML predictions, and visualize the results.
Learn how to set up and use Amazon S3 Multi-Region Access Points and failover controls. You will then be able to access the data in these buckets via a single global endpoint, and test failover between any two active-passive Region pairs.