我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。
如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。
必要 Cookie 對於我們所提供的網站和服務而是必要的,而且無法停用。它們的設定通常是對您在網站上的動作的回應,例如,設定您的隱私偏好、登入或填寫表單。
效能 Cookie 提供有關客戶如何瀏覽我們網站的匿名統計資料,以便我們改善網站體驗和效能。獲核准的第三方可代表我們執行分析,但他們無法將資料用於自己的用途。
功能 Cookie 可協助我們提供實用的網站功能、記住您的偏好設定,以及顯示相關內容,獲核准的第三方可能會設定這些 Cookie 以提供特定網站功能。若您不允許這些 Cookie,則部分或全部服務可能無法正常運作。
我們或我們的廣告合作夥伴可以透過網站對廣告 Cookie 進行設定,協助我們提供相關的行銷內容。若您不允許這些 Cookie,您將看到相關程度較低的廣告。
封鎖部分類型的 Cookie 可能會影響您在使用我們的網站時的體驗。您可以隨時在本網站頁尾按一下「Cookie 偏好設定」來變更您的 Cookie 偏好設定。若要進一步了解我們和獲核准的第三方如何在我們的網站上使用 Cookie,請閱讀我們的 AWS Cookie 通知。
我們會在 AWS 網站和其他資產上顯示與您興趣相關的廣告,包括跨情境行為廣告。跨情境行為廣告使用來自一個網站或應用程式的資料,在不同公司的網站或應用程式上向您投放廣告。
若要不允許 AWS 根據 Cookie 或類似技術進行跨情境行為廣告,請在下方選取「不允許」並「儲存隱私權選擇」,或造訪已啟用法律認可拒絕訊號的 AWS 網站,例如全域隱私權控制。如果您刪除 Cookie 或從其他瀏覽器或裝置造訪本網站,您需要重新選擇。如需關於 Cookie 及其使用方式的詳細資訊,請參閱 AWS Cookie 聲明。
若要不允許所有其他 AWS 跨情境行為廣告,請透過電子郵件填寫此表單。
如需有關 AWS 如何處理您的資訊的詳細資訊,請閱讀 AWS 隱私權聲明。
我們目前只會儲存基本 Cookie,因為我們無法儲存您的 Cookie 偏好設定。
如果您想要變更 Cookie 偏好設定,請稍後使用 AWS 主控台頁尾中的連結重試,如果問題仍存在,請聯絡支援部門。
Learn how to utilize Amazon Bedrock and Amazon Textract to extract and process information from unstructured documents.
Learn how to deploy a sample containerized application on a Nginx server using AWS App Runner.
Learn how to build and deploy a React web application with user authentication, a database, and storage using AWS Amplify.
Learn how to use AWS Amplify to build a serverless web application powered by Generative AI using Amazon Bedrock and the Claude 3 Sonnet foundation model.
Learn how to build and host a full-stack React app with AWS Amplify, featuring authentication, data, and serverless functions.
Learn how to configure and connect to Amazon Aurora Serverless v2.
Learn how to use Amazon SageMaker Canvas to build machine learning (ML) models and generate accurate predictions without writing a single line of code.
Learn how to set up your AWS account and development environment. This will allow you to interact with your AWS account and provision any resources you need for building a system programmatically.
Learn to build a continuous delivery pipeline for a simple web application using AWS CodeBuild and AWS CodePipeline.
Learn how to replicate objects already existing in your buckets within the same AWS Region or across different AWS Regions with Amazon Simple Storage Service (Amazon S3) Batch Replication.
In this tutorial, you learn and experiment with machine learning using Amazon SageMaker Studio Lab, a no-setup, free development environment.
In this tutorial, you’ll learn how to use Amazon SageMaker to train, a machine learning (ML) model using the AWS Trainium instances.
Learn how to publish a .NET application on a Windows Server 2022 instance in Amazon Lightsail.
Learn how to use Amazon SageMaker geospatial capabilities to access readily available geospatial data, make ML predictions, and visualize the results.
Learn how to set up and use Amazon S3 Multi-Region Access Points and failover controls. You will then be able to access the data in these buckets via a single global endpoint, and test failover between any two active-passive Region pairs.