Artificial Intelligence
Category: Amazon SageMaker
Automatically generate model evaluation metrics using SageMaker Autopilot Model Quality Reports
Amazon SageMaker Autopilot helps you complete an end-to-end machine learning (ML) workflow by automating the steps of feature engineering, training, tuning, and deploying an ML model for inference. You provide SageMaker Autopilot with a tabular data set and a target attribute to predict. Then, SageMaker Autopilot automatically explores your data, trains, tunes, ranks and finds […]
Build a mental health machine learning risk model using Amazon SageMaker Data Wrangler
This post is co-written by Shibangi Saha, Data Scientist, and Graciela Kravtzov, Co-Founder and CTO, of Equilibrium Point. Many individuals are experiencing new symptoms of mental illness, such as stress, anxiety, depression, substance use, and post-traumatic stress disorder (PTSD). According to Kaiser Family Foundation, about half of adults (47%) nationwide have reported negative mental health […]
Optimize customer engagement with reinforcement learning
This is a guest post co-authored by Taylor Names, Staff Machine Learning Engineer, Dev Gupta, Machine Learning Manager, and Argie Angeleas, Senior Product Manager at Ibotta. Ibotta is an American technology company that enables users with its desktop and mobile apps to earn cash back on in-store, mobile app, and online purchases with receipt submission, […]
How Amazon Search achieves low-latency, high-throughput T5 inference with NVIDIA Triton on AWS
Amazon Search’s vision is to enable customers to search effortlessly. Our spelling correction helps you find what you want even if you don’t know the exact spelling of the intended words. In the past, we used classical machine learning (ML) algorithms with manual feature engineering for spelling correction. To make the next generational leap in […]
Amazon SageMaker JumpStart models and algorithms now available via API
July 2023: This post was reviewed for accuracy. In December 2020, AWS announced the general availability of Amazon SageMaker JumpStart, a capability of Amazon SageMaker that helps you quickly and easily get started with machine learning (ML). JumpStart provides one-click fine-tuning and deployment of a wide variety of pre-trained models across popular ML tasks, as […]
Secure Amazon S3 access for isolated Amazon SageMaker notebook instances
In this post, we will demonstrate how to securely launch notebook instances in a private subnet of an Amazon Virtual Private Cloud (Amazon VPC), with internet access disabled, and to securely connect to Amazon Simple Storage Service (Amazon S3) using VPC endpoints. This post is for network and security architects that support decentralized data science […]
Build, Share, Deploy: how business analysts and data scientists achieve faster time-to-market using no-code ML and Amazon SageMaker Canvas
April 2023: This post was reviewed and updated with Amazon SageMaker Canvas’s new features and UI changes. Machine learning (ML) helps organizations increase revenue, drive business growth, and reduce cost by optimizing core business functions across multiple verticals, such as demand forecasting, credit scoring, pricing, predicting customer churn, identifying next best offers, predicting late shipments, […]
Enhance your SaaS offering with a data science workbench powered by Amazon SageMaker Studio
September 2023: This post was reviewed and updated for accuracy. Many software as a service (SaaS) providers across various industries are adding machine learning (ML) and artificial intelligence (AI) capabilities to their SaaS offerings to address use cases like personalized product recommendation, fraud detection, and accurate demand protection. Some SaaS providers want to build such […]
Make batch predictions with Amazon SageMaker Autopilot
March 2025: This post was reviewed and updated for accuracy. Amazon SageMaker Autopilot is an automated machine learning (AutoML) solution that performs all the tasks you need to complete an end-to-end machine learning (ML) workflow. It explores and prepares your data, applies different algorithms to generate a model, and transparently provides model insights and explainability […]
Load and transform data from Delta Lake using Amazon SageMaker Studio and Apache Spark
Data lakes have become the norm in the industry for storing critical business data. The primary rationale for a data lake is to land all types of data, from raw data to preprocessed and postprocessed data, and may include both structured and unstructured data formats. Having a centralized data store for all types of data […]