Artificial Intelligence and Machine Learning
Category: Learning Levels
Unlock the power of data governance and no-code machine learning with Amazon SageMaker Canvas and Amazon DataZone
Amazon DataZone is a data management service that makes it quick and convenient to catalog, discover, share, and govern data stored in AWS, on-premises, and third-party sources. Amazon DataZone allows you to create and manage data zones, which are virtual data lakes that store and process your data, without the need for extensive coding or […]
Accelerate performance using a custom chunking mechanism with Amazon Bedrock
This post explores how Accenture used the customization capabilities of Knowledge Bases for Amazon Bedrock to incorporate their data processing workflow and custom logic to create a custom chunking mechanism that enhances the performance of Retrieval Augmented Generation (RAG) and unlock the potential of your PDF data.
Migrate Amazon SageMaker Data Wrangler flows to Amazon SageMaker Canvas for faster data preparation
This post demonstrates how you can bring your existing SageMaker Data Wrangler flows—the instructions created when building data transformations—from SageMaker Studio Classic to SageMaker Canvas. We provide an example of moving files from SageMaker Studio Classic to Amazon Simple Storage Service (Amazon S3) as an intermediate step before importing them into SageMaker Canvas.
Use IP-restricted presigned URLs to enhance security in Amazon SageMaker Ground Truth
While presigned URLs offer a convenient way to grant temporary access to S3 objects, sharing these URLs with people outside of the workteam can lead to unintended access of those objects. To mitigate this risk and enhance the security of SageMaker Ground Truth labeling tasks, we have introduced a new feature that adds an additional layer of security by restricting access to the presigned URLs to the worker’s IP address or virtual private cloud (VPC) endpoint from which they access the labeling task. In this blog post, we show you how to enable this feature, allowing you to enhance your data security as needed, and outline the success criteria for this feature, including the scenarios where it will be most beneficial.
Unlock the power of structured data for enterprises using natural language with Amazon Q Business
In this post, we discuss an architecture to query structured data using Amazon Q Business, and build out an application to query cost and usage data in Amazon Athena with Amazon Q Business. Amazon Q Business can create SQL queries to your data sources when provided with the database schema, additional metadata describing the columns and tables, and prompting instructions. You can extend this architecture to use additional data sources, query validation, and prompting techniques to cover a wider range of use cases.
Perform generative AI-powered data prep and no-code ML over any size of data using Amazon SageMaker Canvas
Amazon SageMaker Canvas now empowers enterprises to harness the full potential of their data by enabling support of petabyte-scale datasets. Starting today, you can interactively prepare large datasets, create end-to-end data flows, and invoke automated machine learning (AutoML) experiments on petabytes of data—a substantial leap from the previous 5 GB limit. With over 50 connectors, […]
Derive generative AI-powered insights from ServiceNow with Amazon Q Business
This post shows how to configure the Amazon Q ServiceNow connector to index your ServiceNow platform and take advantage of generative AI searches in Amazon Q. We use an example of an illustrative ServiceNow platform to discuss technical topics related to AWS services.
Discover insights from Box with the Amazon Q Box connector
Seamless access to content and insights is crucial for delivering exceptional customer experiences and driving successful business outcomes. Box, a leading cloud content management platform, serves as a central repository for diverse digital assets and documents in many organizations. An enterprise Box account typically contains a wealth of materials, including documents, presentations, knowledge articles, and […]
Improve AI assistant response accuracy using Knowledge Bases for Amazon Bedrock and a reranking model
AI chatbots and virtual assistants have become increasingly popular in recent years thanks the breakthroughs of large language models (LLMs). Trained on a large volume of datasets, these models incorporate memory components in their architectural design, allowing them to understand and comprehend textual context. Most common use cases for chatbot assistants focus on a few […]
Automate the machine learning model approval process with Amazon SageMaker Model Registry and Amazon SageMaker Pipelines
This post illustrates how to use common architecture principles to transition from a manual monitoring process to one that is automated. You can use these principles and existing AWS services such as Amazon SageMaker Model Registry and Amazon SageMaker Pipelines to deliver innovative solutions to your customers while maintaining compliance for your ML workloads.