AWS Machine Learning Blog

Tag: AI/ML

Heat Map Visualization

Geospatial generative AI with Amazon Bedrock and Amazon Location Service

Today, geospatial workflows typically consist of loading data, transforming it, and then producing visual insights like maps, text, or charts. Generative AI can automate these tasks through autonomous agents. In this post, we discuss how to use foundation models from Amazon Bedrock to power agents to complete geospatial tasks. These agents can perform various tasks […]

Foundational vision models and visual prompt engineering for autonomous driving applications

Prompt engineering has become an essential skill for anyone working with large language models (LLMs) to generate high-quality and relevant texts. Although text prompt engineering has been widely discussed, visual prompt engineering is an emerging field that requires attention. Visual prompts can include bounding boxes or masks that guide vision models in generating relevant and […]

Index your web crawled content using the new Web Crawler for Amazon Kendra

In this post, we show how to index information stored in websites and use the intelligent search in Amazon Kendra to search for answers from content stored in internal and external websites. In addition, the ML-powered intelligent search can accurately get answers for your questions from unstructured documents with natural language narrative content, for which keyword search is not very effective.

Personalize your generative AI applications with Amazon SageMaker Feature Store

In this post, we elucidate the simple yet powerful idea of combining user profiles and item attributes to generate personalized content recommendations using LLMs. As demonstrated throughout the post, these models hold immense potential in generating high-quality, context-aware input text, which leads to enhanced recommendations. To illustrate this, we guide you through the process of integrating a feature store (representing user profiles) with an LLM to generate these personalized recommendations.

Automate prior authorization using CRD with CDS Hooks and AWS HealthLake

Prior authorization is a crucial process in healthcare that involves the approval of medical treatments or procedures before they are carried out. This process is necessary to ensure that patients receive the right care and that healthcare providers are following the correct procedures. However, prior authorization can be a time-consuming and complex process that requires […]

Train and deploy ML models in a multicloud environment using Amazon SageMaker

In this post, we demonstrate one of the many options that you have to take advantage of AWS’s broadest and deepest set of AI/ML capabilities in a multicloud environment. We show how you can build and train an ML model in AWS and deploy the model in another platform. We train the model using Amazon SageMaker, store the model artifacts in Amazon Simple Storage Service (Amazon S3), and deploy and run the model in Azure.

Generative AI and multi-modal agents in AWS: The key to unlocking new value in financial markets

Multi-modal data is a valuable component of the financial industry, encompassing market, economic, customer, news and social media, and risk data. Financial organizations generate, collect, and use this data to gain insights into financial operations, make better decisions, and improve performance. However, there are challenges associated with multi-modal data due to the complexity and lack […]

Implement smart document search index with Amazon Textract and Amazon OpenSearch

In this post, we’ll take you on a journey to rapidly build and deploy a document search indexing solution that helps your organization to better harness and extract insights from documents. Whether you’re in Human Resources looking for specific clauses in employee contracts, or a financial analyst sifting through a mountain of invoices to extract payment data, this solution is tailored to empower you to access the information you need with unprecedented speed and accuracy.

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. Many practitioners are extending these Redshift datasets at scale for machine learning (ML) using Amazon SageMaker, a fully managed ML service, with requirements to develop features offline in a code […]

Generate creative advertising using generative AI deployed on Amazon SageMaker

Creative advertising has the potential to be revolutionized by generative AI (GenAI). You can now create a wide variation of novel images, such as product shots, by retraining a GenAI model and providing a few inputs into the model, such as textual prompts (sentences describing the scene and objects to be produced by the model). […]