AWS Machine Learning Blog
Category: Artificial Intelligence
Optimizing Japanese text-to-speech with Amazon Polly
Amazon Polly is a cloud service that offers text-to-speech (TTS), a system that converts text input into a waveform, in a range of 61 voices in 29 languages by using advanced deep learning technologies. The Amazon Polly service supports companies in developing digital products that use speech synthesis for a variety of use cases, including […]
Introducing recommendation scores in Amazon Personalize
Amazon Personalize enables you to personalize your website, app, ads, emails, and more, using the same machine learning technology as used by Amazon.com, without requiring any prior machine learning experience. Using Amazon Personalize, you can generate personalized recommendations for your users through a simple API interface. We are pleased to announce that Amazon Personalize now […]
Deploying machine learning models as serverless APIs
Machine learning (ML) practitioners gather data, design algorithms, run experiments, and evaluate the results. After you create an ML model, you face another problem: serving predictions at scale cost-effectively. Serverless technology empowers you to serve your model predictions without worrying about how to manage the underlying infrastructure. Services like AWS Lambda only charge for the […]
Reducing player wait time and right sizing compute allocation using Amazon SageMaker RL and Amazon EKS
As a multiplayer game publisher, you may often need to either over-provision resources or manually manage compute allocation when launching or maintaining an online game to avoid long player wait times. You need to develop, configure, and deploy tools that help you monitor and control the compute allocation. This post demonstrates GameServer Autopilot, a new […]
Autodesk optimizes visual similarity search model in Fusion 360 with Amazon SageMaker Debugger
This post is co-written by Alexander Carlson, a machine learning engineer at Autodesk. Autodesk started its digital transformation journey years ago by moving workloads from private data centers to AWS services. The benefits of digital transformation are clear with generative design, which is a new technology that uses cloud computing to accelerate design exploration beyond […]
Pruning machine learning models with Amazon SageMaker Debugger and Amazon SageMaker Experiments
In the past decade, deep learning has advanced many different areas, such as computer vision and natural language processing. State-of-the-art models now achieve near-human performance in tasks such as image classification. Deep neural networks can achieve this because they consist of millions of parameters that you train on large training datasets. For instance, the BERT […]
Increasing performance and reducing the cost of MXNet inference using Amazon SageMaker Neo and Amazon Elastic Inference
Note: Amazon Elastic Inference is no longer available. Please see Amazon SageMaker for similar capabilities. When running deep learning models in production, balancing infrastructure cost versus model latency is always an important consideration. At re:Invent 2018, AWS introduced Amazon SageMaker Neo and Amazon Elastic Inference, two services that can make models more efficient for deep […]
Analyzing and optimizing Amazon Lex conversations using Dashbot
This post is co-written by Arte Merritt, co-founder and CEO of Dashbot. In their own words, “Dashbot is an analytics platform for chatbots and voice skills that enables enterprises to increase engagement, satisfaction, and conversions through actionable insights and tools.” After you have deployed a bot, it is critical to analyze bot interactions, learn from […]
AWS delivers sessions online at NVIDIA GTC Digital
Starting Tuesday, March 24, 2020, NVIDIA GTC Digital is offering courses for you to learn AWS best practices to accomplish your ML goals faster and more easily. Registration is free, so register now. The following sessions are available from AWS: S22492: Train BERT in One Hour Using Massive Cloud Scale Distributed Deep Learning Learn how […]
Building a trash sorter with AWS DeepLens
April 2023 Update: Starting January 31, 2024, you will no longer be able to access AWS DeepLens through the AWS management console, manage DeepLens devices, or access any projects you have created. To learn more, refer to these frequently asked questions about AWS DeepLens end of life. In this blog post, we show you how to […]