AWS Machine Learning Blog
Category: Amazon SageMaker JumpStart
Boosting Salesforce Einstein’s code generating model performance with Amazon SageMaker
This post is a joint collaboration between Salesforce and AWS and is being cross-published on both the Salesforce Engineering Blog and the AWS Machine Learning Blog. Salesforce, Inc. is an American cloud-based software company headquartered in San Francisco, California. It provides customer relationship management (CRM) software and applications focused on sales, customer service, marketing automation, […]
Use Llama 3.1 405B for synthetic data generation and distillation to fine-tune smaller models
Today, we are excited to announce the availability of the Llama 3.1 405B model on Amazon SageMaker JumpStart, and Amazon Bedrock in preview. The Llama 3.1 models are a collection of state-of-the-art pre-trained and instruct fine-tuned generative artificial intelligence (AI) models in 8B, 70B, and 405B sizes. Amazon SageMaker JumpStart is a machine learning (ML) hub that provides access to algorithms, models, and ML solutions so you can quickly get started with ML. Amazon Bedrock offers a straightforward way to build and scale generative AI applications with Meta Llama models, using a single API.
Llama 3.1 models are now available in Amazon SageMaker JumpStart
Today, we are excited to announce that the state-of-the-art Llama 3.1 collection of multilingual large language models (LLMs), which includes pre-trained and instruction tuned generative AI models in 8B, 70B, and 405B sizes, is available through Amazon SageMaker JumpStart to deploy for inference. Llama is a publicly accessible LLM designed for developers, researchers, and businesses to build, experiment, and responsibly scale their generative artificial intelligence (AI) ideas. In this post, we walk through how to discover and deploy Llama 3.1 models using SageMaker JumpStart.
Achieve up to ~2x higher throughput while reducing costs by up to ~50% for generative AI inference on Amazon SageMaker with the new inference optimization toolkit – Part 2
As generative artificial intelligence (AI) inference becomes increasingly critical for businesses, customers are seeking ways to scale their generative AI operations or integrate generative AI models into existing workflows. Model optimization has emerged as a crucial step, allowing organizations to balance cost-effectiveness and responsiveness, improving productivity. However, price-performance requirements vary widely across use cases. For […]
Achieve up to ~2x higher throughput while reducing costs by ~50% for generative AI inference on Amazon SageMaker with the new inference optimization toolkit – Part 1
Today, Amazon SageMaker announced a new inference optimization toolkit that helps you reduce the time it takes to optimize generative artificial intelligence (AI) models from months to hours, to achieve best-in-class performance for your use case. With this new capability, you can choose from a menu of optimization techniques, apply them to your generative AI […]
Manage Amazon SageMaker JumpStart foundation model access with private hubs
Amazon SageMaker JumpStart is a machine learning (ML) hub offering pre-trained models and pre-built solutions. It provides access to hundreds of foundation models (FMs). A private hub is a feature in SageMaker JumpStart that allows an organization to share their models and notebooks so as to centralize model artifacts, facilitate discoverability, and increase the reuse […]
Code generation using Code Llama 70B and Mixtral 8x7B on Amazon SageMaker
In the ever-evolving landscape of machine learning and artificial intelligence (AI), large language models (LLMs) have emerged as powerful tools for a wide range of natural language processing (NLP) tasks, including code generation. Among these cutting-edge models, Code Llama 70B stands out as a true heavyweight, boasting an impressive 70 billion parameters. Developed by Meta […]
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Today, we are excited to announce that the Jina Embeddings v2 model, developed by Jina AI, is available for customers through Amazon SageMaker JumpStart to deploy with one click for running model inference. This state-of-the-art model supports an impressive 8,192-tokens context length. You can deploy this model with SageMaker JumpStart, a machine learning (ML) hub […]
Falcon 2 11B is now available on Amazon SageMaker JumpStart
Today, we are excited to announce that the first model in the next generation Falcon 2 family, the Falcon 2 11B foundation model (FM) from Technology Innovation Institute (TII), is available through Amazon SageMaker JumpStart to deploy and run inference. Falcon 2 11B is a trained dense decoder model on a 5.5 trillion token dataset […]
Mixtral 8x22B is now available in Amazon SageMaker JumpStart
Today, we are excited to announce the Mixtral-8x22B large language model (LLM), developed by Mistral AI, is available for customers through Amazon SageMaker JumpStart to deploy with one click for running inference. You can try out this model with SageMaker JumpStart, a machine learning (ML) hub that provides access to algorithms and models so you […]