生成自定义角色,允许机器学习(ML)从业者能够更快地开始使用 SageMaker。
简化模型文档,提供从概念到部署的关键假设、特征和构件的可见性。
通过统一视图,快速审核所有模型、端点和模型监控工作的性能并排除故障。
通过自动警报跟踪预期模型行为的偏差,以及缺失或无效的监控作业。
Amazon SageMaker 提供专门构建的治理工具,帮助你可靠地实施 ML。借助 Amazon SageMaker Role Manager,管理员可以在几分钟内定义最低权限。Amazon SageMaker Model Cards 使捕获、检索和共享基本的模型信息变得更容易,例如从概念到部署的预期用途、风险评级和训练细节。Amazon SageMaker Model Dashboard 让您在同一位置了解生产中的模型行为。
观看此视频,了解如何使用 SageMaker 提高 ML 模型的可见性。
工作原理
ML Governance with Amazon SageMaker 使用 SageMaker Role Manager、SageMaker Model Cards 和 SageMaker Model Dashboard 来帮助您简化访问控制并提高 ML 项目的透明度。

主要功能
您可以使用 SageMaker Role Manager 在几分钟内定义最低权限。
简化 ML 活动的权限
SageMaker Role Manager 通过预构建的 AWS Identity and Access Management (IAM) 策略目录为 ML 活动和角色提供一组基线权限。ML 活动可以包括数据准备和训练,角色可以包括 ML 工程师和数据科学家。您可以保留基线权限,或根据您的特定需求进一步自定义它们。
自动生成 IAM policy
通过一些自助提示,您可以快速输入常见的治理构造,例如网络访问边界和加密密钥。然后,SageMaker Role Manager 将自动生成 IAM policy。您可以通过 AWS IAM 控制台发现生成的角色和关联的策略。
附加您的托管策略
要进一步针对您的用例定制权限,请将您的托管 IAM 策略附加到您使用 SageMaker Role Manager 创建的 IAM 角色。您还可以添加标签以帮助跨 AWS 服务识别和组织角色。
用 SageMaker Model Cards 简化模型文档
获取模型信息
SageMaker 模型卡是 Amazon SageMaker 控制台中的模型信息存储库,帮助您集中和标准化模型文档,以便您能够可靠地实施 ML。您可以自动填充训练细节,如输入数据集、训练环境和训练结果,以加速文件编制过程。您还可以添加详细信息,例如模型目的和性能目标。
可视化评估结果
您可以在您的模型卡上附加模型评估结果,如偏差和质量指标,并添加可视化效果,如图表,以获得对模型性能的关键见解。
分享模型卡
您可以将模型卡导出为 PDF 格式,以便更轻松地与业务涉众、内部团队或客户共享。
使用 SageMaker Model Dashboard 进行统一的模型监控
跟踪模型行为
SageMaker Model Dashboard 为您提供已部署模型和端点的全面概览,以便您可以在同一位置跟踪资源和模型行为违规。你可以从四个方面监测模型行为:数据质量、模型质量、偏差漂移和特征归因漂移。SageMaker Model Dashboard 通过与 Amazon SageMaker Model Monitor 和 Amazon SageMaker Clarify 的集成来监控行为。
自动提醒
SageMaker Model Dashboard 提供一种集成体验,可以针对缺失和无效的模型监控作业以及模型行为偏差设置和接收警报。
排查模型偏差的故障
您可以进一步检查各个模型并分析随时间推移影响模型性能的因素。然后,您可以跟进 ML 从业者以采取纠正措施。
客户

“在 United Airlines,我们使用机器学习(ML)通过提供个性化的服务来改善客户体验,使客户使用 Travel Readiness Center 做好准备。我们对 ML 的应用还扩展到了机场运营、网络规划、航班调度等方面。在我们走出新冠疫情之际,Amazon SageMaker 在 Travel Readiness Center 发挥了关键作用,使我们能够使用基于文档的模型自动化处理大量的 COVID 测试证书、疫苗卡。通过 Amazon SageMaker 新的治理功能,我们提高了对机器学习模型的控制力和可见性。SageMaker Role Manager 通过为与 IAM 角色相关的每个角色提供基线权限和 ML 活动,极大地简化了用户设置过程。通过 SageMaker Model Cards,我们的团队可以主动捕捉和分享模型信息,以供审查,而使用 SageMaker Model Dashboard,我们能够搜索和查看部署在 MARS(我们内部 ML 平台)上的模型。凭借这些新的治理功能,我们节省了大量的时间,并且得以纵向扩展。”
United Airlines ML 工程和运营总监 Ashok Srinivas

“在 Capitec,我们产品线上的数据科学家们各有所长,可以构建不同的 ML 解决方案。我们的 ML 工程师们管理着一个建立在 Amazon SageMaker 上的集中式建模平台,以支持所有这些 ML 解决方案的开发和部署。由于没有任何内置的工具,跟踪建模工作往往会出现文档不连贯和模型不可见的情况。通过 SageMaker Model Cards,我们可以在一个统一的环境中跟踪大量的模型元数据,而 SageMaker Model Dashboard 为我们提供了每个模型性能的可见性。此外,SageMaker Role Manager 简化了我们不同产品线中数据科学家的访问管理过程。这些都有助于我们凭借治理模式,保证客户对我们作为金融服务提供商的信任。”
Capitec 银行 ML 工程师 Dean Matter