Komputasi Kriptografis

Mengaktifkan komputasi pada data yang dilindungi secara kriptografis

Apa itu komputasi kriptografis di AWS?

Alat dan layanan kriptografi AWS memanfaatkan berbagai teknologi enkripsi dan penyimpanan yang dapat membantu Anda melindungi data diam dan bergerak Anda. Secara tradisional, data harus didekripsi sebelum dapat digunakan dalam komputasi. Komputasi kriptografis adalah teknologi yang beroperasi langsung pada data yang dilindungi secara kriptografis sehingga data sensitif tidak pernah terekspos.

Komputasi kriptografi mencakup berbagai teknik penjagaan privasi termasuk komputasi multipihak yang aman, enkripsi homomorfik, privasi yang menjaga pembelajaran federasi, dan enkripsi yang dapat dicari. AWS sedang mengembangkan alat dan layanan komputasi kriptografis untuk membantu Anda memenuhi target keamanan dan kepatuhan, sembari memungkinkan Anda memanfaatkan fleksibilitas, skalabilitas, performa, serta kemudahan penggunaan yang ditawarkan AWS. Misalnya, Anda dapat melihat kerja komputasi kriptografis di AWS Clean Rooms.

Komputasi Kriptografis AWS

Alat sumber terbuka

Komputasi Kriptografis untuk Clean Rooms (C3R)

Pustaka ini memungkinkan Anda berkolaborasi dengan data Anda di AWS Clean Rooms menggunakan teknik yang memungkinkan beberapa pihak untuk bersama-sama menghitung fungsi atas input mereka sekaligus menjaga input tersebut tetap privat. Jika Anda memiliki kebijakan penanganan data yang memerlukan enkripsi data sensitif, Anda dapat melakukan enkripsi data sebelumnya menggunakan kunci enkripsi khusus kolaborasi umum agar data terenkripsi bahkan saat kueri berjalan.

Inferensi XGBoost Pelindung Privasi

Repositori ini berisi implementasi prototipe XGBoost pelindung privasi. Repositori tersebut mengadopsi beberapa skema enkripsi pelindung properti untuk mengenkripsi model XGBoost sehingga model pelindung privasi dapat memprediksi kueri terenkripsi.

Pengikatan C++ untuk Pustaka Enkripsi Homomorfik Lattigo

Pustaka ini menyediakan pengikatan C++ parsial untuk pustaka enkripsi homomorfik Lattigo v2.1.1 yang ditulis dalam bahasa pemrograman Go. Pengemas ini tidak berusaha menyediakan pengikatan untuk semua API Lattigo publik, tetapi pengikatan baru cukup mudah untuk ditambahkan dan PR diperbolehkan.

Homomorphic Implementor’s Toolkit

Homomorphic Implementor’s Tookit (HIT) menyediakan alat untuk menyederhanakan proses perancangan sirkuit homomorfik untuk skema enkripsi homomorfik CKKS.

Komputasi Kriptografis: Melindungi Data yang Sedang Digunakan

Pelajari cara melindungi data yang sedang digunakan menggunakan teknik kriptografis baru. Bincang Teknologi AWS ini menjelaskan berbagai teknik dalam komputasi kriptografis dan cara kami menerapkannya di AWS Clean Rooms. 

Kriptografis dari Masa Depan

Dapatkan gambaran umum tentang area riset terapan AWS, termasuk algoritma kriptografis pascakuantum, komputasi aman multipihak, enkripsi homomorfik yang sedang digunakan, dan distribusi kunci kuantum.

Machine Learning Pelindung Privasi

Dalam perbincangan ini, Amazon Scholar Joan Feigenbaum menampilkan model AWS untuk machine learning pelindung privasi dan menjelaskan dua prototipe yang telah dikembangkan AWS.

Riset dan wawasan

Periset AWS secara berkala melakukan kontribusi berupa makalah untuk membantu meningkatkan bidang komputasi kriptografis.

Sirkuit Homomorfik Kedalaman Rendah untuk Pelatihan Model Regresi Logistik
Makalah ini menjelaskan pendekatan pada machine learning menggunakan enkripsi homomorfik; menunjukkan cara membangun sirkuit untuk regresi logistik yang dapat melakukan iterasi pelatihan dua kali lebih banyak dalam jumlah waktu yang sama seperti hasil yang dipublikasikan sebelumnya.

Agregasi Aman dan Privat Klien untuk Pembelajaran Federasi Perlindungan Privasi
Dalam makalah ini, kami memperkenalkan protokol baru bagi pembelajaran federasi perlindungan privasi yang melibatkan konsorsium klien dan server cloud di mana server berkomputasi pada data terenkripsi untuk mengagregasi model terlatih lokal klien menjadi model terenkripsi global, yang hanya dapat didekripsi oleh klien.

Pemrosesan Kueri Top-k pada Basis Data Terenkripsi dengan Jaminan Keamanan Yang Kuat
Makalah ini mengusulkan konstruksi pemrosesan kueri top-k aman pertama yang efisien dan dapat dibuktikan serta mencapai keamanan Chosen Query Attack secara adaptif. Periset AWS mengembangkan struktur data terenkripsi yang disebut EHL dan menjelaskan beberapa subprotokol aman dalam model keamanan kami untuk menjawab kueri top-k.

Inferensi XGBoost Pelindung Privasi
Salah satu tujuan utama dari machine learning pelindung privasi adalah memungkinkan pengguna mengirimkan kueri terenkripsi ke layanan ML jarak jauh, menerima hasil terenkripsi, dan mendekripsinya secara lokal. Makalah ini menguraikan algoritma prediksi XGBoost pelindung privasi yang telah diimplementasikan dan dievaluasi secara empiris di AWS SageMaker.

Ekstraktor Fuzzy Komputasi
Dalam makalah ini, periset AWS menginvestigasi apakah mungkin untuk membangun ekstraktor fuzzy. Pertama, mereka menunjukkan bahwa sketsa aman bergantung pada batas atas dari teori pengodean, meskipun persyaratan keamanan teori informasi dilonggarkan. Kemudian mereka menunjukkan hasil positif bahwa hasil negatif dapat dihindari dengan membangun dan menganalisis ekstraktor fuzzy komputasi secara langsung dengan memodifikasi konstruksi kode-offset untuk menggunakan kode linier acak.

Tertarik mempelajari selengkapnya tentang komputasi kriptografis dengan AWS?