AWS Machine Learning Blog
Category: Integration & Automation
How Crexi achieved ML models deployment on AWS at scale and boosted efficiency
Commercial Real Estate Exchange, Inc. (Crexi), is a digital marketplace and platform designed to streamline commercial real estate transactions. In this post, we will review how Crexi achieved its business needs and developed a versatile and powerful framework for AI/ML pipeline creation and deployment. This customizable and scalable solution allows its ML models to be efficiently deployed and managed to meet diverse project requirements.
Implementing advanced prompt engineering with Amazon Bedrock
In this post, we provide insights and practical examples to help balance and optimize the prompt engineering workflow. We focus on advanced prompt techniques and best practices for the models provided in Amazon Bedrock, a fully managed service that offers a choice of high-performing foundation models from leading AI companies such as Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API. With these prompting techniques, developers and researchers can harness the full capabilities of Amazon Bedrock, providing clear and concise communication while mitigating potential risks or undesirable outputs.
Build an end-to-end RAG solution using Amazon Bedrock Knowledge Bases and AWS CloudFormation
Retrieval Augmented Generation (RAG) is a state-of-the-art approach to building question answering systems that combines the strengths of retrieval and foundation models (FMs). RAG models first retrieve relevant information from a large corpus of text and then use a FM to synthesize an answer based on the retrieved information. An end-to-end RAG solution involves several […]
Accelerate deep learning training and simplify orchestration with AWS Trainium and AWS Batch
In large language model (LLM) training, effective orchestration and compute resource management poses a significant challenge. Automation of resource provisioning, scaling, and workflow management is vital for optimizing resource usage and streamlining complex workflows, thereby achieving efficient deep learning training processes. Simplified orchestration enables researchers and practitioners to focus more on model experimentation, hyperparameter tuning, […]
Develop and train large models cost-efficiently with Metaflow and AWS Trainium
This is a guest post co-authored with Ville Tuulos (Co-founder and CEO) and Eddie Mattia (Data Scientist) of Outerbounds. To build a production-grade AI system today (for example, to do multilingual sentiment analysis of customer support conversations), what are the primary technical challenges? Historically, natural language processing (NLP) would be a primary research and development […]
Achieve DevOps maturity with BMC AMI zAdviser Enterprise and Amazon Bedrock
This blog post discusses how BMC Software added AWS Generative AI capabilities to its product BMC AMI zAdviser Enterprise. The zAdviser uses Amazon Bedrock to provide summarization, analysis, and recommendations for improvement based on the DORA metrics data.
Automatically redact PII for machine learning using Amazon SageMaker Data Wrangler
Customers increasingly want to use deep learning approaches such as large language models (LLMs) to automate the extraction of data and insights. For many industries, data that is useful for machine learning (ML) may contain personally identifiable information (PII). To ensure customer privacy and maintain regulatory compliance while training, fine-tuning, and using deep learning models, […]
Implement smart document search index with Amazon Textract and Amazon OpenSearch
In this post, we’ll take you on a journey to rapidly build and deploy a document search indexing solution that helps your organization to better harness and extract insights from documents. Whether you’re in Human Resources looking for specific clauses in employee contracts, or a financial analyst sifting through a mountain of invoices to extract payment data, this solution is tailored to empower you to access the information you need with unprecedented speed and accuracy.
Deploy and manage machine learning pipelines with Terraform using Amazon SageMaker
AWS customers are relying on Infrastructure as Code (IaC) to design, develop, and manage their cloud infrastructure. IaC ensures that customer infrastructure and services are consistent, scalable, and reproducible, while being able to follow best practices in the area of development operations (DevOps). One possible approach to manage AWS infrastructure and services with IaC is […]