AWS Machine Learning Blog
Tag: Generative AI
Efficiently train models with large sequence lengths using Amazon SageMaker model parallel
In this post, we demonstrate how the Amazon SageMaker model parallel library (SMP) addresses this need through support for new features such as 8-bit floating point (FP8) mixed-precision training for accelerated training performance and context parallelism for processing large input sequence lengths, expanding the list of its existing features.
Reducing hallucinations in large language models with custom intervention using Amazon Bedrock Agents
This post demonstrates how to use Amazon Bedrock Agents, Amazon Knowledge Bases, and the RAGAS evaluation metrics to build a custom hallucination detector and remediate it by using human-in-the-loop. The agentic workflow can be extended to custom use cases through different hallucination remediation techniques and offers the flexibility to detect and mitigate hallucinations using custom actions.
Build a read-through semantic cache with Amazon OpenSearch Serverless and Amazon Bedrock
This post presents a strategy for optimizing LLM-based applications. Given the increasing need for efficient and cost-effective AI solutions, we present a serverless read-through caching blueprint that uses repeated data patterns. With this cache, developers can effectively save and access similar prompts, thereby enhancing their systems’ efficiency and response times.
Connect SharePoint Online to Amazon Q Business using OAuth 2.0 ROPC flow authentication
In this post, we explore how to integrate Amazon Q Business with SharePoint Online using the OAuth 2.0 ROPC flow authentication method. We provide both manual and automated approaches using PowerShell scripts for configuring the required Azure AD settings. Additionally, we demonstrate how to enter those details along with your SharePoint authentication credentials into the Amazon Q console to finalize the secure connection.
Amazon SageMaker Inference now supports G6e instances
G6e instances on SageMaker unlock the ability to deploy a wide variety of open source models cost-effectively. With superior memory capacity, enhanced performance, and cost-effectiveness, these instances represent a compelling solution for organizations looking to deploy and scale their AI applications. The ability to handle larger models, support longer context lengths, and maintain high throughput makes G6e instances particularly valuable for modern AI applications.
Build generative AI applications on Amazon Bedrock with the AWS SDK for Python (Boto3)
In this post, we demonstrate how to use Amazon Bedrock with the AWS SDK for Python (Boto3) to programmatically incorporate FMs. We explore invoking a specific FM and processing the generated text, showcasing the potential for developers to use these models in their applications for a variety of use cases
Customize small language models on AWS with automotive terminology
In this post, we guide you through the phases of customizing SLMs on AWS, with a specific focus on automotive terminology for diagnostics as a Q&A task. We begin with the data analysis phase and progress through the end-to-end process, covering fine-tuning, deployment, and evaluation. We compare a customized SLM with a general purpose LLM, using various metrics to assess vocabulary richness and overall accuracy.
Automate cloud security vulnerability assessment and alerting using Amazon Bedrock
This post demonstrates a proactive approach for security vulnerability assessment of your accounts and workloads, using Amazon GuardDuty, Amazon Bedrock, and other AWS serverless technologies. This approach aims to identify potential vulnerabilities proactively and provide your users with timely alerts and recommendations, avoiding reactive escalations and other damages.
How MSD uses Amazon Bedrock to translate natural language into SQL for complex healthcare databases
MSD, a leading pharmaceutical company, collaborates with AWS to implement a powerful text-to-SQL generative AI solution using Amazon Bedrock and Anthropic’s Claude 3.5 Sonnet model. This approach streamlines data extraction from complex healthcare databases like DE-SynPUF, enabling analysts to generate SQL queries from natural language questions. The solution addresses challenges such as coded columns, non-intuitive names, and ambiguous queries, significantly reducing query time and democratizing data access.
Principal Financial Group uses QnABot on AWS and Amazon Q Business to enhance workforce productivity with generative AI
In this post, we explore how Principal used QnABot paired with Amazon Q Business and Amazon Bedrock to create Principal AI Generative Experience: a user-friendly, secure internal chatbot for faster access to information. Using generative AI, Principal’s employees can now focus on deeper human judgment based decisioning, instead of spending time scouring for answers from data sources manually.