전 세계의 선도적인 조직이 어떻게 Amazon SageMaker를 사용하여 기계 학습(ML) 모델을 구축, 훈련 및 배포하는지 알아보세요.
Intuit
Intuit는 중소기업, 회계사 및 개인을 위해 재무, 회계 및 세금 보고 소프트웨어 및 관련 서비스를 개발하고 판매하는 비즈니스 및 금융 소프트웨어 회사입니다.
"Amazon SageMaker를 통해 플랫폼에 저희 알고리즘을 구축 및 배포함으로써 대규모로 인공 지능 이니셔티브를 가속화할 수 있습니다. 복잡한 문제를 해결하도록 새로운 대규모 기계 학습 및 AI 알고리즘을 만들고 이 플랫폼에 배포하여 고객의 성공을 지원할 수 있게 될 것입니다."
Ashok Srivastava, Intuit의 최고 데이터 경영자
GE Healthcare
GE Healthcare는 하드웨어, 소프트웨어 및 생명 공학 분야의 데이터와 분석을 활용하여 의료 서비스 제공 업체와 환자에게 보다 나은 결과를 제공함으로써 의료 서비스를 혁신하고 있습니다.
“Amazon SageMaker는 GE Healthcare가 강력한 인공 지능 도구 및 서비스에 액세스하여 환자 치료 서비스를 더욱 개선할 수 있게 해 줍니다. Amazon SageMaker의 확장성과 기본 AWS 서비스의 통합성은 저희에게 막대한 가치를 추가해 줍니다. GE Health Cloud와 Amazon SageMaker 간의 지속적인 협력이 의료 서비스 제공 업체 파트너에게 더 나은 결과를 가져다주고 더 향상된 환자 치료를 제공해 줄 것으로 기대하고 있습니다.”
Sharath Pasupunuti, GE Healthcare의 수석 AI 엔지니어
ADP, Inc.
ADP는 인적 자본 관리(HCM) 솔루션을 제공하는 선도적인 글로벌 기술 회사입니다. ADP DataCloud는 3천만 명이 넘는 직원의 뛰어난 ADP 인력 데이터를 활용하여 경영진이 비즈니스를 더 잘 관리하기 위한 실시간 결정을 내리는 데 도움이 되는 실행 가능한 인사이트를 제공합니다.
“인재를 유지하고 유치하는 것이 어려운 일이기 때문에 저희는 고용주가 강력한 팀을 유지할 수 있도록 인공 지능 기능으로 ADP DataCloud를 계속 개선하고 있습니다. 저희는 Amazon SageMaker를 포함한 AWS Machine Learning을 사용하여 인력 패턴을 신속하게 식별하고 직원 이직률 또는 보상 증가의 영향과 같은 결과를 미리 예측합니다. AWS를 인공 지능 및 기계 학습을 위한 기본 플랫폼으로 활용함으로써 기계 학습 모델을 배포하는 데 걸리는 시간을 2주에서 단 1일로 단축했습니다.”
Jack Berkowitz, ADP, Inc.의 제품 개발 부문 SVP
BASF Digital Farming
BASF Digital Farming의 미션은 농부의 더 현명한 의사 결정을 지원하고 전 세계의 인구 증가에 맞춰 식량을 생산해야 한다는 당면 과제를 해결하는 동시에 환경적 영향을 줄이는 것입니다.
“Amazon SageMaker와 관련 AWS 기술은 빠른 실험을 가능하게 합니다. 사용이 쉬운 기능과 API는 기계 학습 도입의 진입 장벽을 낮춰줍니다. 따라서 기계 학습 사용 사례의 모든 잠재적 가치를 빠르게 실현할 수 있습니다.”
Christian Kerkhoff 박사, BASF Digital Farming GmbH 데이터 자동화 관리자

Cerner
Cerner Corporation은 다양한 건강 정보 기술(HIT) 솔루션, 서비스, 디바이스 및 하드웨어를 제공하는 글로벌 건강 및 기술 회사입니다.
"Cerner는 광범위한 임상, 재무 및 운영 경험에 걸쳐 인공 지능과 기계 학습 혁신을 추진하게 된 것을 자랑스럽게 생각합니다. Cerner의 Machine Learning Ecosystem과 Cerner Natural Language Processing 모두에서 생성되고 AWS와의 협업을 통해 가능한 새로운 기능으로 저희는 모든 고객을 위한 확장 가능한 혁신을 가속화하고 있습니다. Amazon SageMaker는 Cerner가 AI/ML을 통해 고객에게 가치를 제공하려는 저희의 의도를 잘 전달할 수 있게 하는 중요한 구성 요소입니다. 또한 Amazon SageMaker는 Cerner에 TensorFlow 및 PyTorch와 같은 여러 프레임워크를 활용할 수 있는 기능 및 다양한 AWS 서비스와 통합할 수 있는 기능을 제공합니다.”
Sasanka Are 박사, Cerner의 부사장

Dow Jones
Dow Jones & Co.는 신문, 웹 사이트, 모바일 앱, 비디오, 뉴스레터, 잡지, 독점 데이터베이스, 회의 및 라디오를 통해 소비자와 조직에 콘텐츠를 제공하는 글로벌 뉴스 및 비즈니스 정보 제공업체입니다.
"Dow Jones에서 계속해서 기계 학습을 제품과 서비스에 통합하는 데 집중적으로 노력하고 있는 가운데 AWS는 훌륭한 파트너가 되어 주었습니다. 최근의 Machine Learning Hackathon에 이르기까지 AWS 팀은 참가자들에게 Amazon SageMaker 및 Amazon Rekognition에 대한 훈련을 제공하고 모든 팀에 일일 지원을 제공했습니다. 그 결과 저희 팀은 기계 학습을 어떻게 적용할 수 있는지에 대한 멋진 아이디어를 창출했고 그 중 많은 것을 AWS를 사용해서 계속 개발할 것입니다. 이 행사는 매우 성공적이었으며 훌륭한 파트너십이 어떤 것인지를 보여주는 예입니다.”
Ramin Beheshti, Dow Jones의 그룹 주요 제품 및 기술 경영자

Advanced Microgrid Solutions
Advanced Microgrid Solutions(AMS)는 청정 에너지 자산의 배포와 최적화를 촉진하여 청정 에너지 경제로의 전 세계적 전환을 가속화하는 것을 목표로 하는 에너지 플랫폼 및 서비스 회사입니다. NEM은 모든 당사자가 5분마다 에너지를 소비/공급하기 위해 입찰하는 현물 시장을 사용합니다. 이를 위해서는 엄청난 양의 시장 데이터를 처리하면서 수요 예측을 수행하고 몇 분 안에 동적 입찰을 제시해야 합니다. 이 문제를 해결하기 위해 AMS는 Amazon SageMaker 기반 TensorFlow를 사용하여 딥 러닝 모델을 구축했습니다. AMS는 Amazon SageMaker의 자동 모델 튜닝을 활용하여 최고의 모델 파라미터를 발견하고 단 몇 주 만에 모델을 구축했습니다. AMS의 모델은 순 에너지 계량에서 모든 에너지 제품에 대한 시장 예측 개선을 보여주었으며 이는 상당한 효율성으로 이어질 것입니다.

ProQuest
ProQuest는 세계 최대의 저널, ebook, 주요 출처, 논문, 뉴스 및 비디오 컬렉션을 큐레이팅하며 도서관의 컬렉션을 구축하고 늘리는 데 도움이 되는 강력한 워크플로 솔루션을 만듭니다. ProQuest 제품과 서비스는 150개국에 위치한 학계, K-12, 공립, 회사 및 정부 도서관에서 사용됩니다.
“저희는 AWS와의 협업을 통해 도서관 이용자를 위한 보다 효과적인 비디오 사용자 경험을 구축하여 도서 검색 시 보다 관련성 있는 결과를 얻을 수 있도록 합니다. AWS ML Solutions Lab과 협력하여 Amazon SageMaker로 여러 알고리즘을 테스트하고, 하이퍼파라미터 최적화를 사용하여 모델을 조정하고, 기계 학습(ML) 모델 배포를 자동화했습니다. 저희는 지금까지의 결과에 만족하며 현재 다른 제품에 대한 ML 기술을 고려하고 있습니다.”
Allan Lu, ProQuest의 연구 도구, 서비스 및 플랫폼 부문 부사장
Celgene
Celgene은 전 세계 환자의 삶을 개선하기 위해 노력하는 글로벌 바이오 제약 회사로서 암, 면역 염증 및 기타 충족되지 않은 의학적 요구가 있는 환자를 위한 혁신적인 치료법의 발견, 개발 및 상업화에 주력합니다.
“Celgene의 비전은 매우 혁신적이고 삶을 바꾸는 치료를 제공하고 전 세계 환자의 삶을 개선하는 것입니다. Amazon SageMaker와 Apache MXNet을 사용하여 이전보다 더 빠르고 쉽게 솔루션과 프로세스 개발을 위한 딥 러닝 모델을 구축하고 훈련할 수 있으며 치료법을 찾고 약물을 생산하기 위한 노력을 쉽게 확대할 수 있습니다. SageMaker와 Amazon EC2 P3 인스턴스를 사용하면서 모델을 훈련하는 시간과 생산성이 향상되어 저희 팀이 획기적인 연구 및 발견에 집중할 수 있게 되었습니다.”
Lance Smith, Celgene의 이사

Thomson Reuters
Thomson Reuters는 전문 시장을 위한 세계 최고의 뉴스 및 정보 소스입니다.
"저희는 지난 25년간 정보를 마이닝, 연결, 강화 및 분류하여 고객에게 전달할 수 있는 첨단 기계 학습 기능을 개발해 왔고 이를 통해 고객은 업무를 간소화하고 더 많은 가치를 이끌어낼 수 있었습니다. Amazon SageMaker를 사용함으로써 질문에 대답하는 애플리케이션을 위한 자연어 처리 기능을 설계할 수 있었습니다. 저희 솔루션에서는 Amazon SageMaker의 기능을 사용하여 대규모 딥 러닝 구성을 여러 번 반복해야 했습니다."
Khalid Al-Kofahi, Thomson Reuters Center의 AI and Cognitive Computing 담당자
Zalando
Zalando는 유럽의 대표적인 패션 및 라이프스타일 전문 온라인 플랫폼으로, 17개 시장에서 2,800만 명이 넘는 활성 고객을 보유하고 있으며 의류, 신발, 액세서리 및 미용 서비스를 제공합니다.
“Zalando의 가치는 고객 중심, 속도, 기업가 정신 및 권한 부여에 초점을 둡니다. 저희는 AWS에서 기계 학습 워크로드를 표준화하여 고객 경험을 개선하고, 팀에 생산성을 높이는 도구와 프로세스를 제공하고, 비즈니스 판도를 바꾸기로 결정했습니다. Zalando는 Amazon SageMaker를 사용하여 캠페인을 더 잘 이끌고 개개인에게 잘 맞는 의상을 만들고 고객에게 더 나은 경험을 제공할 수 있습니다. 이 AWS 기반 솔루션 덕분에 엔지니어와 데이터 사이언티스트의 생산성이 20% 향상되었습니다."
Rodrigue Schäfer, Zalando의 디지털 기반 부문 이사
Atlas Van Lines
Atlas Van Lines는 북미에서 두 번째로 큰 밴 라인으로 1948년 이사 및 보관 업계의 기업가 그룹이 창설했습니다. 이 조직은 사업의 기본 원칙을 고수하면서 동부 및 서부 간 이사를 지원한다는 단일 목표로 개발되었습니다. 견고한 사업 영역 외에도 Atlas는 업계를 능가하는 엄격한 에이전트 품질 요구 사항을 자랑으로 여깁니다.
가장 바쁜 이사철 동안 Atlas 에이전트 네트워크는 고객의 요구를 충족할 수 있도록 여러 시장에서 협력합니다. 기존의 견적을 내는 방식은 인력이 필요하고 품이 많이 들었습니다. 또한 다년간의 경험을 갖춘 직원들의 지혜와 직감에 의존해야 했습니다. Atlas는 2011년 이후의 이력 데이터를 보유하고 있었으며 향후 시장 요구에 따라 수용량과 가격을 동적으로 조정할 수 있는 방법을 찾고자 했습니다.
Atlas는 APN 프리미어 컨설팅 파트너인 Pariveda Solutions 사와 협력하여 장거리 이사 업계에서 능동적 수용량과 가격 관리의 가능성을 열었습니다. Pariveda는 데이터를 준비하고 기계 학습 모델을 개발 및 평가하고 성능을 조정했습니다. 이 회사에서는 Amazon SageMaker를 사용하여 모델을 훈련하고 최적화한 다음 Amazon SageMaker의 모듈식 특성을 통해 Amazon EC2를 사용하여 실행하도록 모델을 내보냈습니다.

Tinder
지금까지 200억 건의 만남을 주선한 Tinder는 전 세계에서 가장 인기 있는 데이트 앱입니다.
"모든 Tinder 스와이프 뒤에는 190여 개국에서 분당 수백만 개의 요청, 하루에 수십억 개의 스와이프를 관리하는 시스템이 있습니다. Amazon SageMaker는 기계 학습을 간소화하여 저희 개발 팀이 이전에는 불가능했을 새로운 만남을 성사시키는 예측 모델을 구축할 수 있도록 지원합니다."
Elie Seidman, Tinder CEO

Edmunds
Edmunds.com은 2,000만 명의 월간 방문자에게 차량에 대한 상세하고 지속적으로 업데이트된 정보를 제공하는 자동차 쇼핑 웹 사이트입니다.
“당사는 모든 엔지니어가 기계 학습을 다룰 수 있게 하는 전략적 계획을 갖고 있습니다. Amazon SageMaker는 엔지니어가 보다 쉽게 기계 학습 모델과 알고리즘을 구축, 훈련 및 배포하게 한다는 목표를 달성하는 데 도움이 되는 핵심 요소입니다. Edmunds에서 SageMaker를 사용해서 저희 고객을 위해 전사적으로 새로운 솔루션을 어떻게 혁신하게 될지 기대가 큽니다.”
Stephen Felisan, Edmunds.com의 CIO

Hotels.com
Hotels.com은 41개 언어로 현지화된 90개의 웹 사이트를 운영하는 세계적인 숙박 브랜드입니다.
"Hotels.com은 언제나 더 빠르게 움직이고 최신 기술을 활용하고 혁신을 추구하는 데 관심이 있습니다. Amazon SageMaker를 사용하면 분산 훈련, 최적화된 알고리즘, 내장된 하이퍼파라미터 기능을 통해 팀에서 최대 규모의 데이터 세트를 기반으로 좀 더 정확한 모델을 신속하게 구축하여, 모델을 프로덕션에 적용하는 데 걸리는 시간을 상당히 단축할 수 있을 것입니다. 이는 간단한 API 호출로 구현됩니다. Amazon SageMaker는 기계 학습의 복잡성을 대폭 줄여 고객에게 더 나은 경험을 신속하게 제공할 수 있도록 합니다."
Matt Fryer, Hotels.com 및 Expedia Affiliate Network의 부사장 겸 최고 데이터 사이언스 책임자

Formosa Plastics
Formosa Plastics Corporation은 플라스틱 수지 및 석유 화학 제품의 수직 통합 공급업체로 성장하고 있습니다. Formosa Plastics는 고객이 요구하는 일관성, 성능 및 품질을 제공하는 폴리염화 비닐, 폴리에틸렌 및 폴리프로필렌 수지, 가성 소다 및 기타 석유 화학 제품 전체를 제공합니다.
"Formosa Plastics는 대만 최고의 석유 화학 회사 중 하나이며 세계 최고의 플라스틱 제조업체 중 하나입니다. 저희는 결함을 보다 정확하게 감지하고 수작업 비용을 줄이기 위해 기계 학습을 알아보기로 결정했으며 이를 위해 AWS를 우선 클라우드 공급자로 선택했습니다. AWS ML Solutions Lab은 비즈니스 사용 사례 정의를 위한 디스커버리 워크숍부터 적절한 기계 학습 모델 구축 및 선택, 실제 배포에 이르기까지 프로세스의 모든 단계에서 저희와 함께 했습니다. 기계 학습 솔루션은 Amazon SageMaker를 사용하여 직원이 수동 검사에 쓰는 시간을 반으로 줄였습니다. Solutions Lab의 도움으로 이제 조건 변화에 따라 SageMaker 모델을 직접 최적화할 수 있습니다.”
Bill Lee, Formosa Plastics Corporation의 부사장
Voodoo
Voodoo는 20억 건 이상의 게임 다운로드와 4억 명 이상의 월별 활성 사용자(MAU)를 보유한 선도적인 모바일 게임 회사입니다. 그들은 자체 광고 플랫폼을 운영하고 기계 학습을 통해 사용자에게 표시되는 광고 입찰의 정확성과 품질을 개선하고 있습니다.
"Voodoo는 수백만 명을 넘어 점점 더 커져가는 플레이어 기반의 적극적인 참여를 이끌어야 합니다. AWS에서 기계 학습 및 인공 지능 워크로드를 표준화함으로써 비즈니스 성장과 게이머 참여를 계속하는 데 필요한 속도와 규모로 반복할 수 있습니다. Amazon SageMaker를 사용하면 플레이어에게 표시할 광고를 실시간으로 결정하고 매일 3천만 명 이상의 사용자가 1억 번 이상 엔드포인트를 호출할 수 있습니다. 이는 하루에 10억 건에 가까운 예측을 나타냅니다. AWS Machine Learning을 통해 소규모 팀의 지원을 받아 일주일 내에 정확한 모델을 프로덕션에 적용하고 팀과 비즈니스의 성장에 따라 이를 기반으로 구축을 계속할 수 있었습니다.”
Aymeric Roffé, Voodoo의 CTO
Zendesk
Zendesk는 고객 관계 개선을 위한 소프트웨어를 제작합니다. 조직이 고객 참여를 개선하고 고객을 더 잘 이해할 수 있도록 돕습니다. 150개 이상의 국가와 지역에서 Zendesk 제품을 사용하는 유료 고객 계정은 94,000개에 달합니다.
"Amazon SageMaker는 저희의 기계 학습 사용 속도를 높이고 비용을 낮출 것입니다. Zendesk는 Amazon SageMaker를 통해 기존 자체 관리형 TensorFlow 배포에서 완전관리형 서비스로 전환할 수 있습니다. 또한 Amazon SageMaker를 통해 모델 작성/학습/제공용 인프라를 관리하는 동시에 널리 사용되는 기타 딥 러닝 프레임워크에도 더 쉽게 액세스할 수 있습니다."
David Bernstein, Zendesk의 전략 기술 부문 이사
Regit
이전의 Motoring.co.uk인 Regit은 자동차 기술 회사이자 운전자를 위한 영국 최고의 온라인 서비스 회사입니다. Regit은 차량 번호판을 기반으로 한 디지털 자동차 관리 서비스를 제공하고 교통부(MOT) 세금, 보험 및 리콜과 같은 정보 제공 알림을 운전자에게 제공합니다.
Regit은 APN 어드밴스드 컨설팅 파트너인 Peak Business Insight와 협력하여 사용자가 자동차를 교체할 가능성에 대한 예측을 제공할 수 있도록 카테고리 및 변수 데이터를 동시에 처리하는 "카테고리 기계 학습 모델"을 적용함으로써 Regit에 대한 판매가 이루어졌습니다.
Peak는 실시간 처리, 모델링 및 데이터 출력을 위해 Amazon SageMaker와 같은 AWS 서비스를 사용했습니다. Amazon SageMaker는 Regit을 위해 일일 5,000건의 API 요청을 처리하고 관련 데이터 요구 사항을 원활하게 확장 및 조정하며 리드 채점 결과 전달을 관리합니다. 한편, Amazon Redshift 및 Amazon Elastic Compute Cloud(Amazon EC2) 인스턴스는 모델 성능과 결과를 효율적이고 지속적으로 최적화합니다. Peak와 함께 Regit은 250만 명의 사용자 중 누가 언제 자동차를 교체할 것인지 예측할 수 있었습니다. 이는 고객이 보다 개인화되고 대상 별로 차별화된 서비스를 고객에게 제공하여 콜센터 매출을 1/4 이상 늘릴 수 있음을 의미합니다.
Zocdoc
Zocdoc은 의료 행위에 대한 정보와 개별 의사 일정에 대한 통합 솔루션으로 최종 사용자에게 의료 검색을 제공합니다. 환자의 요구에 초점을 두고 최상의 의료 경험을 제공하고자 노력합니다.
“Zocdoc의 목표는 환자가 적합한 의사를 쉽게 찾고 가장 편리한 시간과 장소에서 예약을 할 수 있도록 하는 것입니다. Zocdoc 엔지니어들은 Amazon SageMaker를 사용하면 매우 쉽고 빠르게 모델을 구축, 훈련 및 배포할 수 있다는 사실에 흥분을 감추지 못했습니다. 모바일 엔지니어 중 한 명이 의사 전문 추천 모델을 새로 훈련하고 배포하는 데 하루도 걸리지 않았으며 이 모델은 결국 프로덕션으로 출시되었습니다. 이전에는 데이터 과학 팀이 모든 모델 작업 개발에 참여해야 했기 때문에 제품 팀을 지연시켰습니다. Amazon SageMaker를 사용하면 SageMaker의 간소화되고 쉬운 엔드 투 엔드 기능으로 개념에서 프로덕션까지 훨씬 더 빠르게 작업을 진행할 수 있습니다."

Realtor.com
realtor.com®, Doorsteps® 및 Moving.com™을 포함하는 Move, Inc. 네트워크는 웹 사이트 및 모바일을 통해 소비자와 부동산 전문가들에게 부동산 정보, 도구 및 전문 지식을 제공합니다.
“Amazon SageMaker가 당사가 주택 소유에 이르기까지의 여정에서 소비자를 지원하는 데 있어 realtor.com® 도구 세트를 한층 더 훌륭하게 업그레이드할 것으로 믿습니다. 훈련 및 모델 최적화와 같이 과거에 오랜 시간이 걸렸던 기계 학습 워크플로를 보다 효율적으로 더 많은 개발자가 수행할 수 있으므로 데이터 사이언티스트 및 분석가는 사용자에게 가장 광범위한 경험을 제공하는 데 집중할 수 있게 됩니다."
Vineet Singh, Move, Inc.의 최고 데이터 경영자 겸 수석 부사장

Grammarly
Grammarly의 알고리즘은 자연어 처리와 고급 기계 학습 기술을 결합하여 여러 디바이스에서 여러 플랫폼에 걸쳐 작문 지원을 제공함으로써 매일 수백만 명의 사람들이 보다 효과적으로 의사 소통하도록 돕고 있습니다.
“Amazon SageMaker를 사용하면 분산된 훈련 환경에서 TensorFlow 모델을 개발하는 것이 가능해집니다. 저희 워크플로는 또한 사전 처리를 위해 Amazon EMR과 통합되므로 Amazon S3에서 데이터를 가져와서 Jupyter 노트북에서 EMR 및 Spark로 필터링한 다음 같은 노트북을 사용해서 Amazon SageMaker에서 훈련할 수 있습니다. SageMaker는 여러 다른 운영 요구 사항에도 유연하게 사용될 수 있습니다. SageMaker 자체에 대한 추론을 실행할 수 있습니다. 모델만 필요한 경우 S3에서 모델을 다운로드하고 iOS 및 Android 고객을 위한 모바일 디바이스 구현에 대한 추론을 실행합니다.”
Stanislav Levental, Grammarly의 수석 기술자
Slice Labs
뉴욕을 기반으로 전 세계에서 활동하는 Slice Labs는 최초의 온디맨드 보험 클라우드 플랫폼 제공업체입니다. Slice는 기업이 직관적인 디지털 보험 상품을 개발할 수 있도록 하여 B2B 시장뿐만 아니라 개별 온디맨드 보험 상품으로 B2C 시장에 서비스를 제공합니다.
“Slice는 끊임없이 변화하는 고객 보험 요구의 특성을 잘 알고 있으며, 광범위한 서비스, 유연성 및 보험사들 사이에서 좋은 평판을 얻고 있는 AWS를 클라우드 플랫폼으로 선택했습니다. 저희는 고객의 요구에 맞는 최상의 보험 옵션에 고객을 연결하는 데 도움이 되는 AWS Machine Learning을 포함하여 비즈니스 지원을 위해 다양한 AWS 서비스를 사용합니다. 인텔리전트 보험 상품을 개발하고 출시하려는 보험사 및 기술 회사와 협력하면서 AWS를 통해 엄청난 비용 절감과 생산성 이점을 경험했습니다. 예를 들어 조달 시간을 47일에서 1일로 98% 단축했습니다. 저희는 AWS를 통한 당사 클라우드 사용 확대와 지리적 확장에 대해 기쁘게 생각합니다."
Philippe Lafreniere, Slice Labs의 최고 성장 책임자

DigitalGlobe
세계적인 고해상도 지구 이미지, 데이터 및 분석 제공업체인 DigitalGlobe는 매일 막대한 양의 데이터를 처리합니다.
“세계적인 고해상도 지구 이미지, 데이터 및 분석 제공업체인 DigitalGlobe는 매일 막대한 양의 데이터를 처리합니다. DigitalGlobe는 사람들이 AWS 클라우드에 저장된 전체 100PB의 이미지 라이브러리를 좀 더 쉽게 검색 및 액세스하고 컴퓨팅을 실행하여 딥 러닝을 인공위성 이미지에 적용할 수 있게 하고 있습니다. Amazon SageMaker를 통해 호스팅된 Jupyter 노트북을 사용하여 페타바이트 규모의 지구 관측 이미지 데이터 세트로 모델을 훈련할 계획입니다. 이를 통해 DigitalGlobe의 GBDX(Geospatial Big Data Platform) 사용자는 하나의 확장 가능한 분산 환경 내에서 간단하게 버튼을 눌러 모델을 생성하고 대규모로 배포할 수 있습니다.
Walter Scott 박사, Maxar Technologies의 CTO 겸 DigitalGlobe 설립자

Intercom
Intercom의 메시징 우선 제품은 다른 회사의 웹 사이트 및 모바일 앱과 원활하게 통합되어 고객 확보, 참여 및 지원을 돕습니다. 2011년에 설립된 이 회사는 샌프란시스코, 런던, 시카고, 더블린에 지사를 두고 있습니다.
“Intercom에는 나날이 커지고 있는 데이터 사이언티스트 및 데이터 지향 엔지니어 팀이 있으며 종종 빠르게 반복하고 데이터 기반 제품을 위한 새로운 솔루션을 탐색하고자 합니다. Amazon SageMaker 전에는 이러한 제품을 만들기 위해 다양한 옵션을 시도했지만 옵션마다 문제가 있었습니다. 코드 공유가 어렵거나, 큰 데이터 세트에 대한 테스트가 느리거나, 하드웨어를 직접 프로비저닝하고 관리하는 데 문제가 있었습니다. SageMaker가 이 모든 것을 해결했습니다. 특히 검색 플랫폼과 기계 학습 기능을 위한 알고리즘을 개발하는 데 SageMaker를 사용하며 SageMaker의 호스팅된 Jupyter 노트북으로 신속한 구축과 반복이 가능하다는 사실을 알게 되었습니다. 결정적으로 SageMaker가 관리형 서비스이므로 팀은 당면한 작업에 집중할 수 있습니다. Amazon SageMaker는 Intercom에 매우 귀중한 서비스이며 회사가 성장함에 따라 계속해서 점점 더 많이 사용되고 있습니다."
Kevin McNally, Intercom의 기계 학습 부문 선임 데이터 사이언티스트

Kinect Energy Group
Kinect Energy Group은 주로 항공, 해상 및 육상 운송 산업에서 상업 및 산업 고객에게 에너지 조달 자문 서비스, 공급 이행, 거래 및 지불 관리 솔루션을 제공하는 Fortune 100대 기업인 World Fuel Services의 자회사입니다. Kinect Energy는 주요 북유럽 에너지 제공업체이며 바람이 많이 부는 이 지역의 기후로 인해 가능한 천연 전력 자원에 의존하고 있습니다.
이 비즈니스는 최근 AWS의 여러 AI/ML 서비스 도입을 통해 발전했습니다. Amazon SageMaker를 통해 회사는 다가오는 날씨 동향과 이에 따른 향후 몇 달 동안의 전기세를 예측할 수 있으므로 업계를 선도하는 미래 지향적 접근 방식인 전례 없는 장거리 에너지 거래가 가능합니다.
“Amazon SageMaker를 사용하기 시작했고 AWS Machine Learning 솔루션 팀과 솔루션스 아키텍처 팀의 도움으로 혁신의 날을 맞아 탄력을 받았으며 그 영향은 그 이후로 엄청났습니다. AWS 기술이 제공하는 새로운 이점을 최대한 활용하기 위해 AI 팀 규모를 여러 번 늘렸습니다. 저희는 이러한 상황이 발생했는지를 기준으로 가격을 책정하여 새로운 방식으로 수익을 올리고 있습니다. 저희는 S3에 데이터를 저장하고, 실행을 위해 Lambda를 사용하고, SageMaker 외에 Step Functions를 사용하는 등 AWS에 "올인"했습니다. 그리고 AWS ML Solutions Lab의 헌신적인 파트너십 덕분에 이제 저희는 자립할 수 있으며 구축한 모델을 반복하고 비즈니스를 지속적으로 개선할 수 있습니다."
Andrew Stypa, Kinect Energy Group의 선임 비즈니스 분석가

Frame.io
Frame.io는 모든 비디오를 위한 허브입니다. 전 세계 70만 명 이상의 고객과 협업 및 비디오 검토 분야의 리더인 Frame.io는 프리랜서에서 기업에 이르기까지 전체 스펙트럼의 비디오 전문가가 비디오를 검토, 승인 및 제공하는 곳입니다.
“전 세계 사용자가 액세스할 수 있는 클라우드 네이티브 비디오 검토 및 협업 플랫폼으로서 고객에게 동급 최고의 보안을 제공해야 합니다. Amazon SageMaker에 내장된 이상 감지 모델을 통해 기계 학습을 활용하여 원치 않는 IP 요청을 신속하게 식별, 감지 및 차단함으로써 클라이언트의 미디어가 항상 안전하고 보호되도록 할 수 있습니다. Amazon SageMaker를 시작하고, 이를 시간 경과에 따라 유지 관리하고, 플랫폼 전체에서 확장하고, 특정 워크플로에 맞게 조정하는 것은 간단하고 단순합니다. 또한 SageMaker의 Jupyter 노트북으로 다양한 모델을 실험하여 Frame.io를 더욱 안전하게 만드는 방식으로 정밀도와 리콜을 개선할 수 있었습니다.”
Abhinav Srivastava, Frame.io의 정보 보안 부문 책임자 겸 VP
Sportograf
Sportgraf는 여러 분야의 경쟁 스포츠 선수와 마찬가지로 물론 스포츠 팬입니다. 이 회사의 임무는 전문적인 품질의 사진으로 모든 운동 선수의 성과를 존중하고 존경을 표하는 것입니다.
“스포츠 경기를 통해 수백만 장의 사진이 나오는 가운데 저희 회사의 과제는 빠르고 정확하게 배번호(bib)별로 사진을 정리하는 것이었습니다. 해결책을 찾는 가운데 Sportograf는 대규모의 복잡한 작업이 도입되어 즉흥적인 고객 요청에 응답하는 것이 불가능해지기 때문에 특별한 QR 코드나 다른 마커는 사용하지 않기로 결정했습니다. 이러한 문제를 해결하기 위해 텍스트 인식을 위한 Amazon Rekognition과 Amazon SageMaker를 사용하여 거의 실시간으로 선수의 배번호(bib)를 식별할 수 있는 자체 기계 학습 솔루션을 구축할 수 있었습니다.”
Tom Janas, Sportograf의 상무 이사

Cookpad
Cookpad는 일본 최대 규모의 조리법 공유 서비스로, 일본 내 월간 사용자는 약 6천만 명이고 전 세계 사용자는 약 9천만 명입니다.
“Cookpad의 조리법 서비스를 보다 쉽게 사용하고자 하는 수요가 증가함에 따라 저희 데이터 사이언티스트가 사용자 경험을 최적화할 수 있도록 더 많은 기계 학습 모델을 구축하게 될 것입니다. 최상의 성능을 위해 훈련 작업 반복 횟수를 최소화하려고 시도하면서 개발 프로세스 속도를 늦추는 ML 추론 엔드포인트 배포 시 중요한 문제 하나를 깨닫게 되었습니다. 데이터 사이언티스트가 스스로 모델을 배포할 수 있도록 ML 모델 배포를 자동화하기 위해 Amazon SageMaker의 추론 API를 사용하여 Amazon SageMaker를 사용할 경우 애플리케이션 엔지니어가 ML 모델을 배포할 필요가 없게 된다는 점을 입증했습니다. 운영 환경에서 Amazon SageMaker를 사용하면 이 프로세스가 자동화될 것으로 예상됩니다.
Yoichiro Someya, Cookpad의 연구 엔지니어

Fabulyst
Fabulyst는 패션 커머스에 초점을 둔 인도 기반 스타트업으로, 쇼핑객에게 더 긍정적이고 개인화된 경험을 제공하고 AI를 통해 소매업체에 더 나은 전환율을 제공합니다.
“Fabulyst는 재고 품목을 사용자의 특정 맞춤 쿼리(예: 체형 또는 피부색에 적합)에 연결하여 쇼핑객이 보다 쉽게 완벽한 구매품을 찾을 수 있게 합니다. 동시에 컴퓨터 비전을 사용하여 소셜 미디어, 검색, 블로그 등의 데이터를 기반으로 월별 추세를 예측하고 소매 고객의 카탈로그에서 이러한 추세에 자동으로 태그를 지정함으로써 소매 업체가 보다 효과적인 전환을 달성할 수 있도록 지원합니다. Fabulyst는 AWS를 사용하여 Amazon SageMaker를 포함한 동급 최고의 솔루션을 제공하여 당사 서비스를 지원하는 많은 예측을 처리합니다. SageMaker와 기타 AWS 서비스를 통해 사용자에게 가치를 보장할 수 있습니다(예: 소매업체의 수익 10% 증가). 또한 항상 뛰어난 결과를 제공할 수 있다는 확신을 갖게 되었습니다.”
Komal Prajapati, Fabulyst의 창립자 겸 CEO

Terragon Group
Terragon Group은 아프리카의 모바일 고객에게 다가가기 위해 인사이트를 사용하여 비즈니스의 가치를 창출하는 데이터 및 마케팅 기술 비즈니스입니다. 수년에 걸쳐 Terragon Group은 여러 지역의 현지 및 다국적 브랜드에 서비스를 제공하는 모바일 공간의 리더가 되었습니다. 적절한 순간에 적절한 사용자에게 적절한 광고 메시지를 전달하려면 개인화가 필요하며 Terragon은 데이터, 인사이트 및 인공 지능을 사용하여 아프리카의 적절한 고객에게 비즈니스가 다가갈 수 있도록 지원합니다.
“Amazon SageMaker는 기본 인프라를 연결하지 않고도 엔드 투 엔드 기계 학습 워크플로를 제공합니다. 우리의 데이터 과학 및 기계 학습 팀은 단 몇 시간 만에 데이터 탐색에서 모델 훈련 및 생산으로 빠르게 이동할 수 있습니다. 엔지니어링 인재가 부족한 아프리카에 기반을 둔 비즈니스의 경우 90일 이내에 실제 문제를 해결하는 기계 학습 모델을 구축 및 배포할 수 있는 다른 방법이 없었습니다."
Deji Balogun, Terragon Group의 CTO

SmartNews
SmartNews는 일본에서 가장 큰 뉴스 앱으로 매월 전 세계 1,100만여 명의 사용자에게 양질의 정보를 제공합니다. 기계 학습 기술을 통해 SmartNews는 사용자에게 가장 관련성이 높고 흥미로운 뉴스 기사를 제공합니다. SmartNews의 기계 학습 알고리즘은 수백만 개의 기사, 사회적 신호 및 인간 상호 작용을 평가하여 현재 가장 중요한 상위 0.01%의 이야기를 제공합니다.
"좋은 이야기를 찾아서 전 세계에 알리려는 저희의 사명은 AWS, 특히 Amazon SageMaker의 지원으로 실현 가능하며, 이를 통해 고객에게 서비스를 제공하기 위한 개발 주기를 가속화할 수 있었습니다. Amazon SageMaker를 사용함으로써 딥 러닝을 이용한 기사 분류, 평생 가치 예측, 텍스트 및 이미지에 대한 복합 모델링을 포함한 뉴스 큐레이션 방법에 큰 도움이 되었습니다. Amazon SageMaker와 AWS의 다른 AI 솔루션으로 더 높은 수준을 달성하기를 기대합니다.”
Kaisei Hamamoto, SmartNews, Inc.의 공동 창립자 겸 공동 CEO
Signate
Signate는 AI를 사용하여 아웃소싱, 고용 및 컨설팅 서비스를 위한 솔루션을 제공합니다. Signate는 16,000여 명의 회원이 대회를 통해 최고의 모델을 생산하기 위해 서로 경쟁하는 데이터 과학 커뮤니티로도 알려져 있습니다. 이 회사는 또한 Amazon SageMaker를 사용하여 클라이언트가 대회를 통해 얻은 모델을 프로덕션 애플리케이션에 배포하는 데 도움이 되는 서비스를 제공합니다.
“저희는 기계 학습 모델을 구축하기 위한 주요 도구로 Amazon SageMaker를 활용하고 있으며 이로써 "Aldebaran"이라는 모델 관리 시스템의 확장성이 향상되었습니다. SageMaker 덕분에 기계 학습 모델을 동시에 구축, 훈련 및 배포하는 등 워크플로에 원활하게 통합할 수 있었습니다. 이전에는 모델을 프로덕션에 배포하는 데 3~6개월 가량 걸렸습니다. SageMaker를 사용하면 1~4주 내에 모델을 프로덕션에 배포하여 시간을 절약하고 생산성을 높일 수 있습니다. 저희는 SageMaker를 모든 ML 모델에 대한 표준 ML 플랫폼으로 선택했습니다.”
Shigeru Saito, Signate Inc.의 사장 겸 CEO/CDO

Pioneer
Pioneer는 자동차 전자 제품 및 모빌리티 서비스를 포함한 디지털 엔터테인먼트를 전문으로 하는 다국적 기업입니다. Pioneer는 "마음을 움직이고 영혼을 만져라"라는 기업 철학을 바탕으로 고객에게 일상 생활에 도움이 되는 제품과 서비스를 제공합니다.
“Amazon SageMaker와 자동 모델 튜닝 등의 모델 훈련 기능을 활용하여 매우 정확한 기계 학습 모델을 개발하고 고객의 개인 정보 보호를 지속적으로 보장할 수 있었습니다. 또한 알고리즘과 사전 학습된 모델 모두에 대해 기계 학습용 AWS Marketplace를 활용하여 수익 창출 플랫폼을 구축할 수 있기를 기대합니다."
Kazuhiro Miyamoto, Pioneer의 정보 서비스 엔지니어링 부서 총괄 관리자

Dely
Dely는 일본 최고의 요리 영상 서비스인 Kurashiru를 운영하고 있습니다. 전 세계에 영향을 주는 요리 서비스를 만들기 위해 매일 노력하고 있습니다. Kurashiru는 요리 동영상으로 식탁을 풍성하게 하는 다양한 맛있는 요리법을 매일 소개하여 많은 사람들에게 도움을 줍니다. 일본에서 수천만 명의 사람들이 월간 레시피 서비스를 보고 듣고 있습니다.
“인기 있는 Kurashiru 서비스를 시작한 지 2년 반 만에 모바일 앱 다운로드 수가 1,500만 건을 돌파했습니다. 기계 학습과 같은 고급 기술을 사용하여 적시에 사용자에게 올바른 콘텐츠를 제공하는 것이 중요하다고 생각합니다. 이를 위해 Amazon SageMaker를 사용하여 90일 만에 기계 학습 모델을 구축하고 프로덕션에 배포할 수 있었습니다. 또한 콘텐츠 개인화를 통해 클릭률을 15% 개선했습니다.”
Masato Otake, Dely, Inc.의 CTO

Ayla Networks
샌프란시스코에 본사를 둔 Ayla Networks는 소비자 및 상업 시장을 위한 솔루션을 개발하는 IoT PaaS(Platform as a Service) 소프트웨어 회사입니다.
“Ayla Networks는 고객들이 주로 확장성과 안정성이 입증된 AWS 인프라를 이용한다는 사실을 알게 되었습니다. 특히 상업용 제조업체에서 Amazon SageMaker를 활용하여 Ayla Cloud의 장비 성능 데이터를 이용하고 있습니다. Amazon SageMaker와 Ayla IQ 제품을 통해 기업은 기계 고장을 예측하고 문제가 발생하기 전에 해결하는 등 인사이트를 제공하고 이상을 알려서 제품과 서비스 품질을 개선합니다. 이 솔루션은 고객의 원활한 운영을 유지하여 비즈니스가 걱정 없이 성장, 생산 및 확장할 수 있도록 합니다.”
Prashanth Shetty, Ayla Networks의 글로벌 마케팅 부문 VP

FreakOut
FreakOut은 디지털 광고에 중점을 둔 선도적인 기술 회사입니다. 이 회사는 인터넷 광고에서 실시간 광고 인벤토리 거래를 위한 제품과 웹 브라우징을 위한 데이터 분석을 제공합니다. FreakOut은 클릭률(CTR) 및 전환율(CVR) 예측에 기계 학습을 활용합니다.
“저희는 온프레미스에서 Amazon SageMaker로 기계 학습 훈련 환경을 마이그레이션하고 있습니다. Amazon SageMaker는 비즈니스를 위해 확장성이 더 뛰어난 솔루션을 제공합니다. Amazon SageMaker의 자동 모델 튜닝 기능을 사용하면 요구 사항에 맞게 매우 정확한 모델을 최적화하고 예측할 수 있습니다."
Jiro Nishiguchi, FreakOut의 CTO

Wag!
"Wag!는 양면 시장에서 수요와 공급 요구를 충족해야 합니다. 저희는 AWS에서 제공하는 기계 학습을 사용하여 고객의 개 산책 수요를 예측할 수 있는 기회를 발견했습니다. AWS에서 기계 학습 애플리케이션을 표준화함으로써 엔지니어링 리소스가 제한된 상황에서도 대폭 향상된 속도와 규모로 반복하여 지속적으로 늘어나는 비즈니스 요구 사항을 충족할 수 있습니다. Amazon SageMaker를 사용하면 기계 학습 실험 속도를 높이고 모델 학습에 소요되는 계산 시간을 45일에서 3일로 단축할 수 있습니다.”
Dave Bullock, Wag Labs Inc.의 엔지니어링 및 운영 기술 부문 VP

Euler Hermes
"100년이 넘는 긴 세월 동안 저희는 상거래를 더 안전하고 간단하게 만드는 선도적인 서비스를 지속적으로 도입하면서 고객 성장을 돕고 있습니다. 3천만 개가 넘는 기업의 관리 및 재무 데이터로 인해 비즈니스 운영이 영향을 받기 전에 사이버 사기를 탐지하기 어려울 수 있습니다. 선호하는 AI/ML 플랫폼인 Amazon SageMaker와의 협력을 통해 더 빠르게 혁신할 수 있습니다. 예를 들어 7개월 만에 새로운 내부 서비스를 시작할 수 있었으며 이제 악성 도메인 생성 후 24시간 내에 URL 스쿼팅 사기를 식별할 수 있습니다.”
Luis Leon, Euler Hermes의 IT 혁신 고문

iFood
iFood는 라틴 아메리카에서 온라인 음식 배달의 선두 주자로 월간 주문 수는 3,060만 건에 이르며 1,000개 이상의 도시에 위치한 약 16만 개의 레스토랑이 등록되어 있습니다.
"iFood에서 저희는 기계 학습을 사용하여 고객 및 레스토랑 경험을 개선합니다. Amazon SageMaker를 사용하여 맞춤형 레스토랑 및 요리 추천을 작성할 수 있습니다. 물류에서 배송 담당자는 경로 최적화 덕분에 이동 거리를 12% 단축했습니다. AWS에서 기계 학습 워크로드를 표준화함으로써 이제 실시간 정보와 결과를 제공하는 데 필요한 유연성과 확장성을 갖추게 되었습니다."
Sandor Caetano, iFood의 수석 데이터 사이언티스트

Root Insurance
"Root Insurance는 기술을 통해 인구 통계만이 아닌 실제 운전 방식에 따라 자동차 보험의 가격을 책정합니다. Root의 성장에 따라 Amazon SageMaker의 훈련 및 일괄 변환 기능은 회사의 요구 사항에 더욱 적합해졌습니다. AWS에서 기계 학습 워크로드를 표준화함으로써 휴대폰의 원격 측정을 분석하고 모범 운전자가 자동차 보험료를 최대 52%까지 절약하도록 지원할 수 있습니다.”
Bill Kaper, Root Insurance의 엔지니어링 부문 VP

Infoblox
Infoblox는 네트워킹 코어, 즉 DNS, DHCP 및 IP 주소 관리(통칭 DDI)를 관리하고 보호하도록 설계된 안전한 클라우드 관리 네트워크 서비스의 선두 주자입니다.
"Infoblox에서는 Amazon SageMaker로 DNS 보안 분석 서비스를 구축했습니다. 이 서비스는 가치가 높은 도메인 이름 대상을 가장하기 위해 동형을 생성하고 이를 사용하여 맬웨어를 퍼뜨리고 사용자 정보를 피싱하고 브랜드의 평판을 공격하는 악의적인 행위자를 탐지합니다. AWS는 클라우드를 위한 엔터프라이즈 표준이며 SageMaker에서 제공하는 여러 기능을 활용하여 기계 학습 모델 개발을 가속화할 수 있습니다. SageMaker 자동 모델 튜닝 기능을 사용하여 실험을 확장하고 정확도를 96.9%로 개선했습니다. SageMaker 덕분에 당사 보안 분석 서비스의 일부인 IDN 동형 탐지기는 6천만 건이 넘는 동형 도메인 확인을 식별했으며 매월 수백만 건을 더 검색하여 고객이 브랜드 남용을 더 빨리 탐지할 수 있습니다."
Femi Olumofin, Infoblox의 분석 아키텍트

Zappos
Zappos는 20년 전에 소규모 온라인 신발 소매업체로 시작했습니다. 이후, 탄탄한 고객 서비스와 혁신적인 직원 경험을 제공하면서 의류, 핸드백, 액세서리 등 다양한 제품을 판매하는 업체로 성장했습니다. 이 회사는 2009년부터 Amazon의 자회사입니다.
"Zappos는 매우 유동적이고 반응이 빠른 사용자 경험을 유지하면서 개별 사용자에 대한 크기 조정 및 검색 결과를 개인화할 수 있는 분석 및 기계 학습 솔루션을 사용하여 전자 상거래 고객 경험을 크게 개선하고 있습니다. Amazon SageMaker를 사용하면 고객의 신발 크기를 예측할 수 있습니다. AWS 서비스를 사용하면 엔지니어가 DevOps 오버헤드 부담을 덜고 성능 및 결과 개선에 집중할 수 있기 때문에 AWS는 ML/AI의 엔터프라이즈 표준이 되고 있습니다.”
Ameen Kazerouni, Zappos의 기계 학습 연구 및 플랫폼 책임자

NerdWallet
샌프란시스코에 본사를 둔 개인 금융 회사인 NerdWallet은 신용 카드, 은행, 투자, 대출 및 보험을 포함한 금융 상품에 대한 리뷰와 비교를 제공합니다.
"NerdWallet은 데이터 과학과 기계 학습을 활용하여 고객과 맞춤형 금융 상품을 연결합니다. 저희는 AWS에서 ML 워크로드를 표준화하기로 결정했습니다. 이를 통해 데이터 사이언스 엔지니어링 방식을 신속하게 현대화할 수 있었기 때문입니다. 덕분에 장애물이 제거되고 제공 시간이 단축되었습니다. Amazon SageMaker를 통해 데이터 사이언티스트는 전략적 추구에 더 많은 시간을 할애하고 경쟁력이 있는 곳 즉, 사용자를 위해 해결 중인 문제에 대한 인사이트에 더 많은 에너지를 집중할 수 있습니다.
Ryan Kirkman, NerdWallet의 선임 엔지니어링 관리자

Splice
Splice는 아티스트가 진정한 창의력을 발휘할 수 있도록 뮤지션이 만든, 뮤지션을 위한 크리에이티브 플랫폼입니다. 이 구독 기반 음악 제작 스타트업은 2013년에 설립되었으며 현재 완벽한 사운드를 찾기 위해 카탈로그를 탐색하는 3백만 명이 넘는 음악가를 대상으로 합니다.
"사운드와 프리셋 카탈로그가 커짐에 따라 올바른 사운드를 찾는 것이 더 어려워지고 있습니다. 이것이 Splice가 동급 최고의 검색 및 검색 기능을 구축하는 데 투자한 이유입니다. Splice는 AWS에서 ML 워크로드를 표준화하여 뮤지션이 원하는 사운드를 쉽게 찾을 수 있게 하는 새로운 사용자 대면 서비스를 만들었습니다. Similar Sounds가 출시된 이후로 검색 전환이 거의 10% 증가했습니다. Amazon SageMaker로 텍스트 기반 검색을 완벽하게 보완하여 사용자가 이전에는 불가능했던 방식으로 카탈로그를 검색하고 탐색할 수 있도록 했습니다."
Alejandro Koretzky, Splice의 기계 학습 부문 책임자 겸 수석 엔지니어

Audeosoft
"기계 학습을 이용하기 전에는 이력서(CV)의 텍스트만 검색할 수 있었지만 광학 문자 인식 기능이 없어 일부 CV는 검색할 수 없었습니다. Amazon Textract를 사용하면 이제 모든 종류의 문서에서 콘텐츠를 추출하고 Elasticsearch 클러스터에 업로드된 모든 파일을 인덱싱할 수 있습니다. 이제 업로드된 모든 문서를 Elasticsearch를 사용하여 검색할 수 있으므로 검색 속도가 원래 SQL 검색보다 10배 더 빠릅니다. 또한 Amazon SageMaker로 단어 벡터링을 구현하여 관련 키워드를 검색 쿼리에 추가했습니다. 이 프로세스를 통해 후보자를 정확하게 분류하고 자격을 부여할 수 있으며 CV에 사용된 동의어 또는 대체 단어로 인한 오류를 없앨 수 있습니다. Amazon SageMaker와 Amazon Textract를 사용하여 채용 담당자를 위한 더 스마트하고 우수한 후보자를 제공할 수 있습니다. 안정적인 성능, 전 세계적 가용성 및 안정성은 Audeosoft의 주요 성공 요인입니다. 약 8년 전에 AWS와 제휴하기로 결정했을 때 저희는 그들이 미래를 위한 훌륭한 파트너가 될 것임을 알았습니다. AWS를 우선 클라우드 공급자로 선택함으로써 저희는 앞으로 수년 간혁신을 창출하려는 추진력과 열망을 공유하는 파트너와 함께 하게 되었습니다."
Marcel Schmidt, Audeosoft의 CTO

Freshworks
Freshworks는 미국/인도에 기반을 둔 B2B SaaS 유니콘으로 전 세계 중소기업(SMB)을 대상으로 합니다. Freshworks는 고객 및 직원 참여 워크플로를 위한 강력하고도 편리한 애플리케이션 포트폴리오를 제공합니다.
"Freshworks에서는 에이전트가 사용자 쿼리를 처리하고 지원 티켓을 성공적으로 해결하고, 영업 및 마케팅 팀이 기회의 우선 순위를 지정하고 신속하게 거래를 성사시키고, 고객 성공 관리자가 위험을 줄이고 비즈니스를 키우는 데 도움이 되는 초개인화된 모델을 사용하여 플래그십 AI/ML 서비스인 Freddy AI Skills를 구축했습니다. 고객의 사용 사례에 최적화된 기계 학습 모델을 쉽게 구축, 훈련 및 배포할 수 있기 때문에 AWS에서 ML 워크로드를 표준화하기로 결정했습니다. Amazon SageMaker 덕분에 11,000명의 고객을 위한 30,000개 이상의 모델을 구축하는 동시에 이러한 모델의 훈련 시간을 24시간에서 33분 미만으로 단축했습니다. SageMaker Model Monitor를 사용하면 데이터 드리프트를 추적하고 모델을 재훈련하여 정확성을 보장할 수 있습니다. Amazon SageMaker가 지원하는 Freddy AI Skills는 스마트 액션, 심층 데이터 인사이트 및 의도 중심 대화를 통해 지속적으로 진화하고 있습니다."
Tejas Bhandarkar, Freshworks Platform의 제품 부문 선임 이사

Veolia
Veolia Water Technologies는 경험이 풍부한 설계 회사이자 수처리 및 폐수 처리 분야의 기술 솔루션 및 서비스를 전문적으로 제공하는 업체입니다.
"AWS와 협력하여 8주 만에 담수화 플랜트의 정수 멤브레인을 청소하거나 교체할 시기를 예상하는 프로토타입을 개발했습니다. Amazon SageMaker를 사용하여 이전 패턴에서 학습하고 오염 지표의 향후 전개를 예측하는 기계 학습 모델을 구축했습니다. AWS에서 기계 학습 워크로드를 표준화함으로써 비용을 절감하고 가동 중지 시간을 방지하는 동시에 생산되는 물의 품질을 개선할 수 있었습니다. 이러한 결과는 중단 없는 깨끗하고 안전한 물 공급이라는 하나의 목표를 달성하기 위한 두 팀의 기술적 경험, 신뢰 및 헌신 없이는 실현될 수 없었을 것입니다."
Aude GIARD, Veolia Water Technologies의 최고 디지털 책임자
Sportradar
선도적인 스포츠 데이터 제공업체인 Sportradar는 전 세계 65여 개의 리그에 실시간 스포츠 데이터를 제공합니다. 최첨단 인사이트를 생성하기 위해 이 회사는 Amazon ML Solutions Lab과 협업하여 축구 골 예측기를 개발했습니다.
“AWS Machine Learning의 기능을 테스트하기 위해 Amazon ML Solutions Lab 팀에 가능한 가장 어려운 컴퓨터 비전 문제 중 하나를 의도적으로 제시했으며 그 결과는 매우 놀라왔습니다. Amazon ML Solutions Lab 팀은 Amazon SageMaker를 사용하여 라이브 게임 플레이 2초 전에 축구 골을 예측하는 기계 학습 모델을 구축했습니다. 이 모델만으로도 저희에게 많은 새로운 비즈니스 기회의 문이 열렸습니다. 비즈니스 혁신을 촉진하고 비용 및 지연 시간 요구 사항을 충족하는 모델을 구축, 훈련 및 배포할 수 있기 때문에 AWS에서 ML 워크로드를 표준화할 수 있기를 기대합니다.”
Ben Burdsall, Sportradar의 CTO

Roche
F. Hoffmann-La Roche AG(Roche)는 제약 및 진단을 전문으로 하는 스위스의 다국적 생명 과학 회사입니다.
“제가 원한 것은 팀이 클라우드에서 기계 학습 워크플로를 체계화하는 것이었습니다. 그래서 저희는 Machine Learning Solutions Lab과 협력하여 Amazon SageMaker 워크숍을 진행하면서 SageMaker가 데이터 사이언티스트의 기계 학습 프로덕션 프로세스를 어떻게 간소화하는지 시연했습니다. 워크숍 이후, 기계 학습 워크로드의 80%가 AWS에서 실행된 덕분에 저희 팀들은 기계 학습 모델을 3배 더 빨리 프로덕션 환경에서 사용할 수 있게 되었습니다. SageMaker와 AWS 스택은 온프레미스 가용성의 제약을 받지 않고 컴퓨팅 리소스를 사용하여 온디맨드로 훈련할 수 있도록 지원합니다.”
Gloria Macia, Roche의 데이터 사이언티스트

Guru
“Guru는 업무 수행에 필요한 지식이 여러분을 찾아야 한다고 믿습니다. 저희는 팀의 가장 중요한 정보를 캡처하여 단일 정보 소스로 구성하는 지식 관리 솔루션입니다. AI를 활용하여 작업하는 곳에서 실시간으로 지식을 추천하고, 검증된 상태로 유지하고, 전반적인 지식 베이스를 더 잘 관리할 수 있도록 돕습니다. 성장하는 제품 데이터 과학 팀은 대규모 기계 학습 시스템 구축, 훈련 및 배포와 같은 현대 기계 학습 팀의 모든 과제에 직면하고 있으며 이러한 과제 중 일부를 극복하기 위한 수단으로 Amazon SageMaker를 사용합니다. 저희는 기계 학습 모델을 프로덕션에 보다 신속하게 배포하기 위해 SageMaker 추론을 활용하고 있습니다. 이는 고객에게 가치를 제공하는 가장 큰 목표를 달성하는 데 도움이 됩니다.”
Nabin Mulepati, Guru의 기계 학습 엔지니어링 부문 담당자

Amazon Operations
COVID-19 대유행 동안 동료의 안전을 위한 Amazon의 노력의 일환으로 Amazon Operations 팀은 전 세계 1,000여 개의 운영 건물에서 사회적 거리 두기 지침을 준수하는 데 도움이 되는 기계 학습 솔루션을 배포했습니다. Amazon Operations는 Amazon Machine Learning Solutions Lab과의 협력하에 Amazon SageMaker를 사용하여 거리 개산을 위한 최첨단 컴퓨터 비전 모델을 생성했습니다.
“AWS에서 기계 학습 워크로드를 표준화하고 ML Solutions Lab의 전문가와 협력하여 수동 검토 작업을 최대 30%를 줄일 수 있는 혁신적인 모델을 여러 개 만들었습니다. Amazon SageMaker를 사용하면 하루 수백 시간이 걸리는 수동 검토 작업을 수행할 필요가 줄어들어 안전에 집중하고 정확성을 높이는 데 더 많은 시간을 할애할 수 있습니다.”
Russell Williams, Amazon OpsTech IT의 소프트웨어 개발 부문 이사

Freddy’s Frozen Custard & Steakburgers
Freddy’s Frozen Custard & Steakburgers는 주문 즉시 조리되는 스테이크 버거, 비엔나 비프 핫도그, 슈스트링 프라이, 맛있는 요리와 갓 볶은 냉동 커스터드 간식을 제공하는 패스트 캐주얼 레스토랑입니다. 2002년에 설립되어 2004년에 프랜차이즈를 시작한 Freddy’s는 현재 32개 주에서 400개에 가까운 레스토랑을 운영하고 있습니다.
“이전에는 비슷해 보이는 두 개의 레스토랑을 선택했지만 이제는 메뉴 항목, 고객 및 위치 간의 관계를 제대로 이해하고 있습니다. Domo의 새로운 ML 기능을 지원하는 Amazon SageMaker Autopilot 덕분에 마케팅 및 구매 팀은 보다 원활하고 효율적으로 새로운 아이디어를 시도하고 고객 경험을 개선할 수 있습니다.”
Sean Thompson, Freddy’s IT 부문 이사

icare Insurance and Care NSW
iCare는 NSW 주 정부 기관으로 오스트레일리아 NSW 주에 있는 32만 9,000명 이상의 공공 및 민간 부문 고용주와 320만 명의 직원에게 산재 보험을 제공합니다. 또한 iCare는 건축업자와 주택 소유자에게 보험을 제공하고 NSW 도로에서 중상을 입은 사람들에게 치료와 지원을 제공하며 시드니 오페라 하우스, 시드니 하버 브리지, 학교 및 병원을 포함한 2,666억 달러 이상의 NSW 정부 자산을 보호합니다.
“Insurance and Care(iCare) NSW의 비전은 보험과 치료에 대한 사고방식을 바꾸는 것입니다. Amazon SageMaker를 통해 iCare는 만성 분진 질환 환자를 조기에 식별하기 위한 딥 러닝 모델을 구축하고 훈련할 수 있었습니다. 이러한 조기 식별은 생명을 위협하는 상태를 예방할 수 있습니다. 이전 연구에 따르면 환자의 39%에서 규폐증 징후를 놓쳤거나 발견하지 못했습니다. AI 보조 진단을 통해 의사는 비보조 진단(71%)보다 정확하게(80%) 사례를 식별할 수 있었습니다. 이 프로젝트를 구현한 후 당사는 Amazon SageMaker에 리소스를 투입하여 다른 프로젝트의 솔루션과 프로세스를 개발하고 있습니다. 이전보다 더 빠르고 쉬운 것으로 입증되었고 NSW 주민들에게 의료 서비스를 제공하기 위한 노력을 쉽게 확장할 수 있기 때문입니다.”
Atul Kamboj, 오스트레일리아 NSW 주 정부 보험 및 의료 기관 iCare 수석 데이터 사이언티스트
더 많은 Amazon SageMaker 기능 검색