客戶使用案例

Hotels.com

Hotels.com 是全球頂尖的住宿品牌,以 41 種語言運作 90 個本地化網站。

「在 Hotels.com,我們致力於快速採用最新技術,並隨時保持創新。Amazon SageMaker 的分散式培訓、優化演算法和內建超參數功能,可讓我的團隊透過龐大的資料集快速建立更準確的模型,並大幅縮減將模型移至生產的時間。只要使用 API 呼叫就能輕鬆搞定。Amazon SageMaker 可大幅降低機器學習的複雜性,讓我們快速為客戶提供更好的使用體驗。」

– Hotels.com 和 Expedia Affiliate Network 副總裁暨資料科學長 Matt Frye

Thomson Reuters

Thomson Reuters 是全球專業市場頂尖的新聞和資訊來源。 

「過去 25 年來,我們致力於開發進階機器學習功能,以發掘、連接、增強、組織資訊,並將其交付給客戶,順利讓客戶簡化並從工作中找出最有價值的資訊。與 Amazon SageMaker 合作,使我們能夠在問答應用程式環境中設計自然語言處理功能。我們的解決方案需要使用 Amazon SageMaker 功能,大規模多次重複執行深度學習組態。」

– Thomson Reuters 人工智慧和認知運算中心 Khalid Al-Kofahi


Intuit 是一家商業和金融軟體公司,專門開發和銷售小型企業、會計師和個人專用的金融、會計和報稅準備軟體,並提供相關服務。

「我們使用 Amazon SageMaker 在平台上建立和部署演算法,以大規模加速人工智慧計劃的推動。我們建立全新的大規模機器學習和 AI 演算法,並將它們部署在這個平台上,以解決複雜問題並讓客戶的事業更加成功。」

– Intuit 首席資料長 Ashok Srivastava

DigitalGlobe

DigitalGlobe 是全世界高解析度地球影像、資料及分析的龍頭供應商之一,每天需要處理大量資料。

「DigitalGlobe 是全世界高解析度地球影像、資料及分析的龍頭供應商之一,每天需要處理大量資料。DigitalGlobe 讓人們可以輕鬆在 100 PB 的完整影像庫 (存放在 AWS 雲端) 中尋找、存取和執行運算,以便在衛星影像套用深度學習。我們打算透過 Amazon SageMaker,利用託管的 Jupyter 筆記本使用數 PB 的地球觀察影像資料集訓練模型,如此一來,DigitalGlobe 地理空間大數據平台 (GBDX) 使用者只要按下按鈕、建立模型,即可將其大規模部署到單一可擴展分散式環境中。」

– Maxar Technologies 首席技術官和 DigitalGlobe 創辦人 Walter Scott 博士


Dow Jones

Dow Jones & Co. 是全球新聞和商業資訊供應商,透過報紙、網站、行動應用程式、影片、電子報、雜誌、專屬資料庫、會議和電台,將內容交付給消費者和組織。

「Dow Jones 持續專注在將機器學習整合到產品和服務,而 AWS 一直都是最佳的合作夥伴。AWS 團隊在最近舉辦的機器學習程式設計馬拉松準備期間,為參賽者提供 Amazon SageMaker 和 Amazon Rekognition 的培訓,以及為所有團隊提供全天候支援。我們的團隊因此開發出一些很好的機器學習運用構想,而我們將持續在 AWS 上開發其中的許多想法。這個活動取得空前的成功,也是合作夥伴的最佳典範。」

– Dow Jones 集團產品和技術總監 Ramin Beheshti

Cookpad

Cookpad 是日本最大的食譜共享服務,在日本每月有 6 千萬名使用者,在全球每月則有 9 千萬名使用者。

 

「越來越多使用者要求更易於使用的 Cookpad 食譜服務,我們的資料科學家將建立更多機器學習模型,以優化使用者體驗。在嘗試降低訓練任務反覆次數以獲得最佳效能時,我們在部署 ML 推論端點上遭遇到很大的困難,也因此拖慢了開發程序。為了自動化 ML 模型部署,讓資料科學家可自行部署模型,我們使用 Amazon SageMaker 推論 API,並證明 Amazon SageMaker 可免除應用程式工程師部署 ML 模型的需要。我們預計在生產時使用 Amazon SageMaker 自動化此程序。」

– Cookpad 研發工程師 Yoichiro Someya


Grammarly

Grammarly 演算法結合自然語言處理和進階機器學習技術,在多種裝置平台上提供寫作幫助,每天協助數百萬人更有效率地進行通訊。

「Amazon SageMaker 讓我們可以在分散式訓練環境開發 TensorFlow 模型。我們工作流程的預先處理程序也與 Amazon EMR 整合,可從 Amazon S3 取得資料、使用 EMR 和 Jupyter notebook 的 Spark 篩選,然後使用相同的 notebook 在 Amazon SageMaker 進行訓練。SageMaker 也可靈活地滿足我們不同的生產需求。我們可以在 SageMaker 本身執行推論,或者如果只需要模型,可從 S3 下載,然後針對 iOS 和 Android 客戶執行行動裝置實作推論。」

– Grammarly 技術主管 Stanislav Levental

realtor.com

Move, Inc. 網路包含 realtor.com®、Doorsteps® 和 Moving.com™,可為消費者和房地產專業人員提供各種網站系列的房地產資訊、工具和專業服務,以及行動體驗。

「我們相信在 realtor.com® 工具集中加入 Amazon SageMaker 是一項重大變革,能夠讓我們在消費者的自有房產旅程中提供協助。訓練和優化模型等過去耗時的機器學習工作流程,現在可以更有效率並由更廣泛的開發人員完成,讓我們的資料科學家和分析師專注在為使用者建立更豐富的體驗。」

– Move, Inc. 首席資料長兼資深副總裁 Vineet Singh


Tinder

Tinder 到目前為止成功促成 200 億組配對,是全球最熱門的交友應用程式。

Tinder 每次的撥動都是一個每分鐘管理數百萬個請求的系統,在 190 多個國家每天有數十億次的撥動。Amazon SageMaker 簡化了機器學習程序,協助我們的開發團隊打造可建立新連接的預測模型,沒有它,這一切都不可能實現。

– Tinder 執行長 Elie Seidman

Edmunds

Edmunds.com 是購車網站,每月為 2 千萬名訪客提供持續更新的詳細車輛資訊。

「我們有一個策略計劃,打算將機器學習技術提供給我們所有的工程師。Amazon SageMaker 是協助我們達成此目標的關鍵,它可協助工程師輕鬆建立、訓練和部署大規模的機器學習模型和演算法。我們等不及要看 Edmunds 如何使用 SageMaker,為我們的客戶在整個組織內創新解決方案。」

– Edmunds.com 資訊長 Stephen Felisan


GE Healthcare

GE Healthcare 利用硬體、軟體和生物科技的資料和分析,為提供者和病患提供更好的成效,以改革醫療保健產業。 

 

「Amazon SageMaker 可讓 GE Healthcare 存取功能強大的人工智慧工具和服務以大幅改善病患照護。Amazon SageMaker 的可擴展性和與原生 AWS 服務整合的能力,為我們帶來極大的價值。我們很熱切的期盼 GE Health Cloud 與 Amazon SageMaker 之間的持續合作,能夠為醫療保健提供者合作夥伴帶來更好的成效,並提供更好的病患照護。」

– GE Healthcare 首席 AI 工程師 Sharath Pasupunuti

Zendesk

Zendesk 建立可提升客戶關係的軟體。該公司能夠讓組織改善與客戶的互動關係,並更加理解他們的客戶。在 150 多個國家和地區有超過 94,000 個付費客戶帳戶使用 Zendesk 產品。

「Amazon SageMaker 可降低我們的成本,並提高使用機器學習的速率。我們使用 Amazon SageMaker 從現有的自我管理 TensorFlow 部署轉移到全受管服務。Amazon SageMaker 還可讓我們輕鬆存取其他常用的深度學習架構,同時管理撰寫、訓練和提供模型的基礎設施。」

– Zendesk 策略技術總監 David Bernstein

 


Atlas Van Lines

Atlas Van Lines 是北美第二大貨運公司,由一群搬家和倉儲業企業家於 1948 年成立。該組織成立的唯一目的就是在東岸和西岸之間進行搬運,並遵守業界的黃金規則。除了穩定的業務量,Atlas 擁有超越業界最嚴格的代理品質要求。

在搬家巔峰季節,Atlas 代理網路會跨多個市場一起合作,以滿足客戶需求。過去,他們預測可負擔的工作量時,需要花費很多體力和人力。他們依賴多年累積的智慧和直覺來預估資源。Atlas 擁有 2011 年之前的歷史資料,且希望可以根據未來的市場需求,動態地調整產量和價格。

Atlas 與 APN 高級諮詢合作夥伴 Pariveda Solutions 合作,在長途搬運業中尋找主動管理產量和價格的可能性。Pariveda 準備資料、開發並評估機器學習模型,然後微調效能。他們使用 Amazon SageMaker 訓練和優化模型,然後使用 Amazon SageMaker 的模組化特性匯出,再使用 Amazon EC2 執行。

Regit

Regit 的前身是 Motoring.co.uk,是一間汽車技術廠,也是英國最頂尖的汽車駕駛線上服務。他們根據汽車牌照交付數位汽車管理服務,並提供駕駛資訊豐富的提醒,像是交通部 (MOT) 稅金、保險和回收。

Regit 與 APN 進階諮詢合作夥伴 Peak Business Insight 合作,運用可同時處理類別和變數資料的「類別機器學習模型」,以預測使用者換車的可能性,進而提升 Regit 的銷售量。

Peak 使用 Amazon SageMaker 等 AWS 服務進行即時導入、建模和資料輸出。Amazon SageMaker 一天可為 Regit 處理 5,000 個 API 請求,無縫擴展和調整相關資料需求,以及管理潛在客戶分數結果的交付。同時,Amazon Redshift 和 Amazon Elastic Compute Cloud (Amazon EC2) 執行個體可有效率且持續地優化模型效能和結果。與 Peak 合作之後,Regit 能夠預測 250 萬個使用者當中有哪些會換車和換車的時機。這表示他們可以更個人化且針對性的方法服務客戶,讓客服中心增加超過四分之一的收入。


Sportograf

Sportograf 創立者中有多種競賽項目的運動員,因此很自然地顯現對運動的熱愛。他們的使命是透過專業品質的相片,展現對每個運動員表現的崇敬之意。

「面對從各種運動活動拍攝的數百萬張相片,我們最大的挑戰是以高度準確的方式,依照號碼布編號快速整理相片。在搜尋解決方案的過程中,Sportograf 決定不使用特殊的 QR 條碼或其他標記,因為這會產生大型且複雜的工作負載,導致無法回應自發的客戶請求。為了解決這項難題,我們使用 Amazon Rekognition 進行文字辨識,而 Amazon SageMaker 則可讓我們建立自己的機器學習解決方案,以近乎即時的方式進一步識別參賽者的號碼布編號。」

– Sportograf 管理總監 Tom Janas

探索更多 Amazon SageMaker 功能

瀏覽功能頁面
準備好開始使用了嗎?
註冊
還有其他問題嗎?
聯絡我們