AWS Machine Learning Blog
Winners of AWS Machine Learning Research Awards announced
The AWS Machine Learning Research Awards (MLRA) provides unrestricted cash funds and AWS Promotional Credits to academics to advance the frontiers of machine learning (ML) and its applications. MLRA is pleased to announce winners for its 2019 Q2/Q3 call-for-proposal cycles: Mohit Bansal, University of North Carolina Chapel Hill, Auto-Adversarial Training to Make Dialogue Systems Robust […]
Customers Achieve Machine Learning Success with AWS’s Machine Learning Solutions Lab
AWS introduced the Machine Learning (ML) Solutions Lab a little over two years ago to connect our machine learning experts and data scientists with AWS customers. Our goal was to help our customers solve their most pressing business problems using ML. We’ve helped our customers increase fraud detection rates, improved forecasting and predictions for more […]
Simplify Machine Learning Inference on Kubernetes with Amazon SageMaker Operators
Amazon SageMaker Operators for Kubernetes allows you to augment your existing Kubernetes cluster with SageMaker hosted endpoints. Machine learning inferencing requires investment to create a reliable and efficient service. For an XGBoost model, developers have to create an application, such as through Flask that will load the model and then run the endpoint, which requires […]
Automating model retraining and deployment using the AWS Step Functions Data Science SDK for Amazon SageMaker
As machine learning (ML) becomes a larger part of companies’ core business, there is a greater emphasis on reducing the time from model creation to deployment. In November of 2019, AWS released the AWS Step Functions Data Science SDK for Amazon SageMaker, an open-source SDK that allows developers to create Step Functions-based machine learning workflows […]
Lowering total cost of ownership for machine learning and increasing productivity with Amazon SageMaker
You have many choices for building, training, and deploying machine learning (ML) models. Weighing the financial considerations of different cloud solutions requires detailed analysis. You must consider the infrastructure, operational, and security costs for each step of the ML workflow, as well as the size and expertise of your data science teams. The Total Cost […]
Flagging suspicious healthcare claims with Amazon SageMaker
The National Health Care Anti-Fraud Association (NHCAA) estimates that healthcare fraud costs the nation approximately $68 billion annually—3% of the nation’s $2.26 trillion in healthcare spending. This is a conservative estimate; other estimates range as high as 10% of annual healthcare expenditure, or $230 billion. Healthcare fraud inevitably results in higher premiums and out-of-pocket expenses […]
Amazon Personalize can now use 10X more item attributes to improve relevance of recommendations
January 2023: This blog post was reviewed and updated by Brian Soper and Rob Percival, with new steps and code along with the option to use AWS CloudShell to run the procedure. Amazon Personalize is a machine learning service which enables you to personalize your website, app, ads, emails, and more, with custom machine learning […]
Capturing and validating alphanumeric identifiers in Amazon Lex
Enterprises often rely on unique identifiers to look up information on accounts or events. For example, airlines use confirmation codes to locate itineraries, and insurance companies use policy IDs to retrieve policy details. In customer support, these identifiers are the first level of information necessary to address customer requests. Identifiers are typically a combination of […]
Registration for Amazon re:MARS is Now Open
Editor’s Note: We have been closely monitoring the situation with COVID-19, and after much consideration, we have made the decision to cancel re:MARS 2020. Our top priority is the well-being of our employees, customers, partners, and event attendees. Over the course of the coming weeks, we will explore other ways to engage the community. To […]
Build a unique Brand Voice with Amazon Polly
AWS is pleased to announce a new feature in Amazon Polly called Brand Voice, a capability in which you can work with the Amazon Polly team of AI research scientists and linguists to build an exclusive, high-quality, Neural Text-to-Speech (NTTS) voice that represents your brand’s persona. Brand Voice allows you to differentiate your brand by […]