AWS Machine Learning Blog
Tag: MLOps
How Zalando optimized large-scale inference and streamlined ML operations on Amazon SageMaker
This post is cowritten with Mones Raslan, Ravi Sharma and Adele Gouttes from Zalando. Zalando SE is one of Europe’s largest ecommerce fashion retailers with around 50 million active customers. Zalando faces the challenge of regular (weekly or daily) discount steering for more than 1 million products, also referred to as markdown pricing. Markdown pricing is […]
Customized model monitoring for near real-time batch inference with Amazon SageMaker
In this post, we present a framework to customize the use of Amazon SageMaker Model Monitor for handling multi-payload inference requests for near real-time inference scenarios. SageMaker Model Monitor monitors the quality of SageMaker ML models in production. Early and proactive detection of deviations in model quality enables you to take corrective actions, such as retraining models, auditing upstream systems, or fixing quality issues without having to monitor models manually or build additional tooling.
How Thomson Reuters Labs achieved AI/ML innovation at pace with AWS MLOps services
In this post, we show you how Thomson Reuters Labs (TR Labs) was able to develop an efficient, flexible, and powerful MLOps process by adopting a standardized MLOps framework that uses AWS SageMaker, SageMaker Experiments, SageMaker Model Registry, and SageMaker Pipelines. The goal being to accelerate how quickly teams can experiment and innovate using AI and machine learning (ML)—whether using natural language processing (NLP), generative AI, or other techniques. We discuss how this has helped decrease the time to market for fresh ideas and helped build a cost-efficient machine learning lifecycle.
Generate unique images by fine-tuning Stable Diffusion XL with Amazon SageMaker
Stable Diffusion XL by Stability AI is a high-quality text-to-image deep learning model that allows you to generate professional-looking images in various styles. Managed versions of Stable Diffusion XL are already available to you on Amazon SageMaker JumpStart (see Use Stable Diffusion XL with Amazon SageMaker JumpStart in Amazon SageMaker Studio) and Amazon Bedrock (see […]
How Dialog Axiata used Amazon SageMaker to scale ML models in production with AI Factory and reduced customer churn within 3 months
The telecommunications industry is more competitive than ever before. With customers able to easily switch between providers, reducing customer churn is a crucial priority for telecom companies who want to stay ahead. To address this challenge, Dialog Axiata has pioneered a cutting-edge solution called the Home Broadband (HBB) Churn Prediction Model. This post explores the […]
Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker
Customers of every size and industry are innovating on AWS by infusing machine learning (ML) into their products and services. Recent developments in generative AI models have further sped up the need of ML adoption across industries. However, implementing security, data privacy, and governance controls are still key challenges faced by customers when implementing ML […]
FMOps/LLMOps: Operationalize generative AI and differences with MLOps
Nowadays, the majority of our customers is excited about large language models (LLMs) and thinking how generative AI could transform their business. However, bringing such solutions and models to the business-as-usual operations is not an easy task. In this post, we discuss how to operationalize generative AI applications using MLOps principles leading to foundation model operations (FMOps). Furthermore, we deep dive on the most common generative AI use case of text-to-text applications and LLM operations (LLMOps), a subset of FMOps. The following figure illustrates the topics we discuss.
Unlocking efficiency: Harnessing the power of Selective Execution in Amazon SageMaker Pipelines
MLOps is a key discipline that often oversees the path to productionizing machine learning (ML) models. It’s natural to focus on a single model that you want to train and deploy. However, in reality, you’ll likely work with dozens or even hundreds of models, and the process may involve multiple complex steps. Therefore, it’s important […]
Accelerate machine learning time to value with Amazon SageMaker JumpStart and PwC’s MLOps accelerator
This is a guest blog post co-written with Vik Pant and Kyle Bassett from PwC. With organizations increasingly investing in machine learning (ML), ML adoption has become an integral part of business transformation strategies. A recent PwC CEO survey unveiled that 84% of Canadian CEOs agree that artificial intelligence (AI) will significantly change their business […]
Launch Amazon SageMaker Autopilot experiments directly from within Amazon SageMaker Pipelines to easily automate MLOps workflows
Amazon SageMaker Autopilot, a low-code machine learning (ML) service that automatically builds, trains, and tunes the best ML models based on tabular data, is now integrated with Amazon SageMaker Pipelines, the first purpose-built continuous integration and continuous delivery (CI/CD) service for ML. This enables the automation of an end-to-end flow of building ML models using […]