D: Cos'è AWS IoT Analytics?

AWS IoT Analytics è un servizio di analisi IoT completamente gestito che raccoglie, pre-elabora, arricchisce, conserva e analizza i dati dei dispositivi IoT su vasta scala.IoT Analytics può effettuare semplici query ad hoc e analisi complesse ed è il modo più semplice per eseguire l'analisi IoT per i casi d'uso come comprendere le prestazioni dei dispositivi, prevedere i guasti dei dispositivi e apprendere in modo automatico. È progettato specificamente per l'IoT e acquisisce e memorizza automaticamente il time stamp dei messaggi, per facilitare l'esecuzione di analisi di serie temporali. IoT Analytics può inoltre arricchire i dati con metadati specifici dei dispositivi, come il tipo e la posizione del dispositivo, utilizzando il registro AWS IoT. IoT Analytics memorizza i dati in un datastore ottimizzato per l'IoT, permettendo di eseguire query di grandi set di dati.

D: Come funziona AWS IoT Analytics?

AWS IoT Analytics è pienamente integrato con AWS IoT Core, quindi è facile iniziare subito. In primo luogo, si definisce un canale e si selezionano i dati da acquisire, in modo da memorizzare e analizzare solo i dati di interesse, come la temperatura di un sensore. Una volta definito il canale, si configurano le pipeline per l'elaborazione dei dati. Le pipeline supportano le trasformazioni come la conversione di Celsius in Fahrenheit, dichiarazioni di condizioni, filtraggio di messaggi e arricchimento di messaggi mediante origini dati esterne e funzioni di AWS Lambda.

Dopo l'elaborazione dei dati nella pipeline, IoT Analytics li memorizza in un datastore ottimizzato per l'IoT per l'analisi. Puoi eseguire query di dati utilizzando il motore di query SQL integrato per rispondere alle domande specifiche del business. Ad esempio, forse vuoi sapere quanti utenti attivi al mese sono presenti per ciascun dispositivo nel tuo parco istanze. Mediante l'integrazione con Amazon SageMaker, IoT Analytics supporta analisi più sofisticate, come inferenza bayesiana e apprendimento automatico. Inoltre, è facile costruire visualizzazioni e pannelli di controllo e ricavare informazioni aziendali in tempi rapidi dai dati di IoT Analytics, dal momento che è integrato con Amazon QuickSight.

D: Quali sono le differenze tra AWS IoT Analytics e Amazon Kinesis Analytics?

AWS IoT Analytics è progettato specificamente per l'IoT e acquisisce e memorizza automaticamente il time stamp dei messaggi, per facilitare l'esecuzione di analisi di serie temporali. IoT Analytics può inoltre arricchire i dati con metadati specifici dei dispositivi, come il tipo e la posizione del dispositivo, utilizzando il registro AWS IoT e altre origini dati pubbliche. IoT Analytics memorizza i dati dei dispositivi in un datastore ottimizzato per l'IoT, permettendo di eseguire query di grandi set di dati.

Amazon Kinesis Analytics è uno strumento per uso generico progettato per elaborare con facilità i dati di streaming dai dispositivi IoT, oltre ad altre origini dati, in tempo reale.

Tabella 1: confronto delle caratteristiche di AWS IoT Analytics e Kinesis Analytics

Caratteristiche AWS IoT Analytics
Amazon Kinesis Analytics
Storage di dati delle serie temporali X  
Partizioni automatiche dei dati per time stamp dei messaggi e ID dei dispositivi X  
Arricchimento di dati specifici dei dispositivi X  
Query di grandi set di dati X  
Analisi di flussi di dati   X
Elaborazione in tempo reale Latenze di minuti o secondi Latenza di secondi o millisecondi
Operazioni basate su finestre temporali   X
Analisi di dati non strutturati e creazione automatica di schemi JSON e CSV JSON e CSV

D: Quando si utilizza AWS IoT Analytics e quando Amazon Kinesis Analytics?

È possibile utilizzare AWS IoT Analytics per l'analisi IoT. Alcuni casi d'uso includono comprensione di prestazioni dei dispositivi a lungo termine, reporting aziendale e analisi ad hoc, nonché manutenzione predittiva dei parchi istanze. IoT Analytics è ideale per questi casi d'uso perché acquisisce, prepara e memorizza i dati provenienti dai dispositivi su lunghi periodi di tempo in un datastore ottimizzato per l'IoT. Inoltre, IoT Analytics arricchisce i dati con metadati specifici dei dispositivi, come il tipo e la posizione del dispositivo, utilizzando il registro AWS IoT e altre origini dati pubbliche.

Tuttavia, se è necessario analizzare i dati IoT in tempo reale per casi d'uso come monitoraggio dei dispositivi, è possibile utilizzare Amazon Kinesis Analytics.

Tabella 2: casi d'uso di AWS IoT Analytics e Kinesis Analytics

Caso d'uso
AWS IoT Analytics Amazon Kinesis Analytics
Comprensione di caratteristiche delle prestazioni dei dispositivi a lungo termine Sì. Arricchimento dei dati IoT con metadati specifici dell'IoT, come il tipo e la posizione del dispositivo, utilizzando il registro AWS IoT e altre origini dati pubbliche. Ad esempio, gli operatori di vigneti devono arricchire i dati dei sensori di umidità con previsioni sulle piogge nei vigneti, in modo da sapere quando irrigare.   No. Ideale per l'analisi di flussi di dati in tempo reale.
Reporting aziendale e analisi ad hoc sui dati IoT Sì. Raccolta, elaborazione e storage di dati IoT e integrazione con AWS QuickSight per creare pannelli di controllo e reporting o utilizzare un motore di query SQL integrato per le query ad hoc. Ad esempio, aggregazione di guasti dei sensori su un parco istanze per la relativa segnalazione settimanale delle prestazioni. No. Ideale per l'esecuzione di query dei flussi di dati sui dati IoT, quale la generazione di avvisi in caso di guasto di un sensore. 
Manutenzione predittiva del parco istanze Sì. Raccolta, elaborazione e storage di dati IoT e utilizzo di modelli predefiniti per creare e distribuire modelli predittivi. Ad esempio, previsione del momento in cui i sistemi HVAC subiranno guasti sui veicoli collegati, in modo da poterli reindirizzare per evitare danni alla spedizione. No. La manutenzione predittiva richiede un'analisi cronologica dei dati a lungo termine per la creazione di modelli. 
Monitoraggio dei dispositivi in tempo reale No. Sì. Kinesis Analytics è in grado di aggregare dati in modo continuo su finestre temporali, rilevare anomalie e attuare misure come l'invio di avvisi. Ad esempio, Kinesis Analytics è in grado di calcolare medie di 10 secondi di funzionamento delle temperature delle valvole ogni 5 minuti nelle apparecchiature industriali e rilevare quando la temperatura supera determinate soglie predefinite. Può quindi avvisare i sistemi di controllo per lo spegnimento automatico dei macchinari, prevenendo incidenti. 

D: Quando si utilizzano AWS IoT Analytics e Amazon Kinesis Analytics insieme?

Puoi utilizzare AWS IoT Analytics e Amazon Kinesis in combinazione quando sono necessarie analisi cronologiche e in tempo reale contemporaneamente. Ad esempio, puoi utilizzare Kinesis Analytics per calcolare medie di 10 secondi di funzionamento delle temperature delle valvole nelle apparecchiature industriali per rilevare quando la temperatura supera determinate soglie. Kinesis Analytics può quindi avvisare i sistemi di controllo per lo spegnimento automatico dei macchinari, prevenendo incidenti. Quindi, puoi utilizzare Kinesis Streams per inviare i dati a IoT Analytics. Con IoT Analytics, puoi comprendere le tendenze e prevedere anche quando sostituire o eseguire la manutenzione delle valvole.

D: Durante il lavoro con i dati IoT, in quali casi è più indicato utilizzare AWS IoT Analytics rispetto ad Amazon Kinesis Streams, Amazon Kinesis Analytics e Amazon Kinesis Firehose?

Amazon Kinesis Streams è un'origine dati per AWS IoT Analytics. I clienti possono utilizzare Kinesis Streams per acquisire dati IoT dei flussi e inviarli a IoT Analytics per elaborazione, storage e analisi.

Amazon Kinesis Analytics è progettato per l'analisi dei flussi di dati, mentre IoT Analytics per l'analisi dei dati inattivi. I clienti che necessitano di analisi sia in tempo reale sia IoT possono utilizzare una combinazione di Kinesis Analytics e IoT Analytics.

Amazon Kinesis Firehose è il mezzo più semplice per caricare flussi di dati nei datastore AWS Amazon S3, Amazon Redshift e Amazon Elasticsearch Service, per ottenere analisi in tempo reale con gli strumenti di business intelligence che usi tutti i giorni. IoT Analytics non supporta Kinesis Firehose come origine dati.

D: Quando si utilizza AWS IoT Analytics e quando Amazon Kinesis Video Streams?

Amazon Kinesis Video Streams semplifica l'invio sicuro in streaming di video, audio e altri dati con codifica temporale da fonti come telecamere, sensori di profondità e RADAR ad AWS per elaborazione in tempo reale e in batch in applicazioni di apprendimento automatico, analisi e altro ancora. Kinesis Video Streams è specificamente progettato per l'integrazione di dati video dai dispositivi, mentre AWS IoT Analytics è pensato per l'analisi di dati IoT non video. In GA, non è presente un'integrazione diretta tra Kinesis Video Streams e AWS IoT Core o IoT Analytics. Tuttavia, i clienti possono eseguire query di Kinesis Video Streams e IoT Analytics dalle loro applicazioni utilizzando le API.

Ulteriori informazioni sulle caratteristiche di AWS IoT Analytics

Visita la pagina delle caratteristiche
Sei pronto per iniziare?
Registrati per l'anteprima
Hai domande?
Contattaci