Amazon Web Services ブログ

Category: SageMaker

Amazon SageMaker – 機械学習を加速する

機械学習は多くのスタートアップやエンタープライズにとって重要な技術です。数十年に渡る投資と改善にも関わらず、機械学習モデルの開発、学習、そして、メンテナンスはいまだに扱いにくく、アドホックなままになっています。機械学習をアプリケーションに組み込むプロセスはしばしば一貫しない仕組みで数ヶ月間に及ぶエキスパートチームによるチューニングと修正を伴います。企業と開発者は機械学習に対する生産パイプラインに対するのエンド・エンドな製品を望んでいます。   Amazon SageMaker の紹介   Amazon SageMaker はフルマネージドなエンド・エンド機械学習サービスで、データサイエンティストや開発者、機械学習のエキスパートがクイックに機械学習モデルをスケーラブルにビルド・学習・ホストすることを可能とします。このサービスが機械学習に関する全ての試みを急激に加速し、プロダクションアプリケーションに素早く機械学習を追加可能とします。 Amazon SageMaker には3つの主要なコンポーネントが存在します: オーサリング:データに関する調査・クレンジング・前処理に対してセットアップ無しで利用可能な Jupyter notebook IDE をCPUベースのインスタンスやGPUを利用可能なインスタンスで実行することが可能です。 モデルトレーニング:モデルトレーニングは分散モデル構築/学習/評価サービスです。ビルトインされた共通の教師あり/教師なし学習アルゴリズムやフレームワークの利用や Docker コンテナによる独自の学習環境を作ることも可能です。学習では、より高速なモデル構築を可能とするため、数十のインスタンスにスケールすることが可能です。学習データは S3 から読み出され、モデルアーティファクト が S3 に保存されます。モデルアーティファクトはデータと分離されたモデルのパラメータであり、モデルを使って推論を可能とするような実行コードではありません。この分離により、IoT デバイスのような他のプラットフォームに SageMaker で学習したモデルをデプロイすることが容易になります。 モデルホスティング:モデルをホストするサービスで、リアルタイムに推論結果を取得するためにモデルを呼び出す HTTPS エンドポイントを提供します。エンドポイントはトラフィックに対処するためにスケールすることができ、同時に複数モデルで A/B テストすることを可能とします。加えて, ビルトインの SDK を利用してエンドポイントを構築できるだけでなく、カスタム設定で Docker イメージを利用することができます。 これらコンポーネントはそれぞれ分離して利用することができ、分離されていることが、存在するパイプラインのギャップを埋めるために Amazon SageMaker を採用することを本当に簡単にしています。故、エンド・エンドにサービスを使用するときに有効になる、本当に強力な事象がいくつも存在します。

Read More