Amazon Web Services ブログ

Category: AWS IoT SiteWise

新機能 – Amazon Lookout for Equipment でセンサーデータを分析し、機器の故障検出に役立てる

産業機器を運用する企業は、運用効率性の向上と、コンポーネントの故障による計画外ダウンタイムの回避に絶えず取り組んでいます。これらの企業は長年の間、機器の状態を監視し、リアルタイムのアラートを受け取るために、物理センサー (タグ)、データ接続、データストレージ、およびダッシュボードの構築に多額の投資を繰り返し行っています。主なデータ分析手法は、単一変数の閾値と物理学に基づくモデリングのアプローチであり、これらの手法は特定の故障タイプや稼働状態の検出には効果的ですが、各機器の多変量関係を導き出すことによって検出される重要な情報を見逃すことがよくあります。 機械学習の使用により、機器の履歴的なデータから学習するデータ駆動のモデルを提供できる、より強力なテクノロジーを利用できるようになりました。しかし、このような機械学習ソリューションの実装は、設備投資とエンジニアのトレーニングが原因で時間がかかり、コストも高額になります。 本日は、機器の異常な動作を検出する API ベースの機械学習 (ML) サービス、Amazon Lookout for Equipment をご紹介します。Lookout for Equipment を使用することによって、お客様は、モデルごとにセンサーやアクチュエータなどのコンポーネントからのデータタグを最大 300 個設定できる、産業機器から生成された履歴的な時系列データと過去のメンテナンスイベントを取り込むことができます。Lookout for Equipment は、可能な組み合わせを自動的にテストし、機械学習モデルを構築して機器の正常な動作を学習します。エンジニアに機械学習の専門知識は必要なく、クラウドでリアルタイム処理のためのモデルを簡単にデプロイできます。 その後、お客様は簡単に ML 推論を実行して、機器の異常な動作を検出することができるようになります。結果は、既存のモニタリングソフトウェア、または AWS IoT SiteWise Monitor に統合して、リアルタイム出力を視覚化する、または資産が異常状態になりやすくなっている場合にアラートを受け取ることができます。 Lookout for Equipment の仕組み Lookout for Equipment は、Amazon S3 バケットからデータを直接読み取ります。お客様は、S3 に産業データをパブリッシュし、Lookout for Equipment を利用してモデルを開発することができます。トレーニングに使用される値や期間の決定、および適切なラベルの割り当てはユーザーが行います。Lookout for Equipment は、この情報に基づいて学習タスクを開始し、お客様それぞれに最適な ML モデルを作成します。 Lookout for Equipment は自動化された機械学習ツールであるため、ユーザーが Lookout for Equipment を使用して新しいデータでモデルを再トレーニングするたびに、Lookout […]

Read More