AWS Machine Learning Blog
Category: AWS Lambda
Implement real-time personalized recommendations using Amazon Personalize
February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. At a basic level, Machine Learning (ML) technology learns from data to make predictions. Businesses use their data with an ML-powered personalization service to elevate their customer experience. This approach allows businesses […]
Reinventing a cloud-native federated learning architecture on AWS
In this blog, you will learn to build a cloud-native FL architecture on AWS. By using infrastructure as code (IaC) tools on AWS, you can deploy FL architectures with ease. Also, a cloud-native architecture takes full advantage of a variety of AWS services with proven security and operational excellence, thereby simplifying the development of FL.
Simplify access to internal information using Retrieval Augmented Generation and LangChain Agents
This post takes you through the most common challenges that customers face when searching internal documents, and gives you concrete guidance on how AWS services can be used to create a generative AI conversational bot that makes internal information more useful. Unstructured data accounts for 80% of all the data found within organizations, consisting of […]
Unlocking language barriers: Translate application logs with Amazon Translate for seamless support
This post addresses the challenge faced by developers and support teams when application logs are presented in languages other than English, making it difficult for them to debug and provide support. The proposed solution uses Amazon Translate to automatically translate non-English logs in CloudWatch, and provides step-by-step guidance on deploying the solution in your environment.
MLOps for batch inference with model monitoring and retraining using Amazon SageMaker, HashiCorp Terraform, and GitLab CI/CD
In this post, we describe how to create an MLOps workflow for batch inference that automates job scheduling, model monitoring, retraining, and registration, as well as error handling and notification by using Amazon SageMaker, Amazon EventBridge, AWS Lambda, Amazon Simple Notification Service (Amazon SNS), HashiCorp Terraform, and GitLab CI/CD. The presented MLOps workflow provides a reusable template for managing the ML lifecycle through automation, monitoring, auditability, and scalability, thereby reducing the complexities and costs of maintaining batch inference workloads in production.
Deploy a serverless ML inference endpoint of large language models using FastAPI, AWS Lambda, and AWS CDK
For data scientists, moving machine learning (ML) models from proof of concept to production often presents a significant challenge. One of the main challenges can be deploying a well-performing, locally trained model to the cloud for inference and use in other applications. It can be cumbersome to manage the process, but with the right tool, […]
How BrainPad fosters internal knowledge sharing with Amazon Kendra
This post discusses how to structure internal knowledge sharing using Amazon Kendra and AWS Lambda and how Amazon Kendra solves the obstacles around knowledge sharing many companies face.
Transform, analyze, and discover insights from unstructured healthcare data using Amazon HealthLake
Healthcare data is complex and siloed, and exists in various formats. An estimated 80% of data within organizations is considered to be unstructured or “dark” data that is locked inside text, emails, PDFs, and scanned documents. This data is difficult to interpret or analyze programmatically and limits how organizations can derive insights from it and […]
Real-time fraud detection using AWS serverless and machine learning services
Online fraud has a widespread impact on businesses and requires an effective end-to-end strategy to detect and prevent new account fraud and account takeovers, and stop suspicious payment transactions. In this post, we show a serverless approach to detect online transaction fraud in near-real time. We show how you can apply this approach to various data streaming and event-driven architectures, depending on the desired outcome and actions to take to prevent fraud (such as alert the user about the fraud or flag the transaction for additional review).
How Marubeni is optimizing market decisions using AWS machine learning and analytics
This post is co-authored with Hernan Figueroa, Sr. Manager Data Science at Marubeni Power International. Marubeni Power International Inc (MPII) owns and invests in power business platforms in the Americas. An important vertical for MPII is asset management for renewable energy and energy storage assets, which are critical to reduce the carbon intensity of our […]