Chisel AI permet aux compagnies d'assurance commerciale et aux courtiers à doubler leur volume d'activités en automatisant les souscriptions classiques et les procédés de courtage.

Le secteur de l'assurance commerciale s'appuie sur des procédés qui nécessitent une quantité considérable de documents. Le traitement de l'ensemble de ces documents requiert une intervention manuelle, coûte cher et favorise les erreurs humaines. Nous utilisons les services AWS pour automatiser et rationaliser les flux opérationnels, à l'aide d'Amazon Textract et d'Amazon Comprehend. Grâce au machine learning, nous avons pu extraire les numéros de police, les dates d'expiration et beaucoup d'autres attributs propres au secteur des assurances plus facilement. Nous utilisons Amazon Textract pour extraire les données de documents à grande échelle, et Amazon Comprehend pour classifier et étiqueter le contenu non structuré dans des documents ainsi que pour extraire certaines entités propres au secteur des assurances.  « Nos applications utilisent Amazon Textract et Amazon Comprehend parallèlement à nos propres modèles propriétaires pour automatiser les procédés manuels coûteux comme la consultation de documents ou l’acceptation de demandes d’assurances. Nous réduisons les efforts pour nos clients, leur permettant d’acheter et de vendre plus vite et plus facilement des assurances commerciales. Nous obtenons d’excellents résultats grâce au machine learning AWS. »
 
- Colin Toal, Chief Technical Officer, Chisel AI

Nous aidons les entreprises en leur apportant la transparence, la traçabilité et une réelle compréhension des données de leur chaîne logistique afin qu'elles puissent protéger leurs marques, supprimer les obstacles de l'accès au marché et réduire les risques opérationnels et financiers.

« Nous nous efforçons de combiner la technologie et l'expertise dans le domaine des affaires pour aider nos clients à comprendre les risques de conformité dans leur chaîne logistique. Nous recherchions un moyen de traiter les documents de conformité à grande échelle. Notre processus consiste à lire des images et des documents PDF contenant des formulaires, des tableaux et du texte libre et à extraire les données intéressantes de ces documents. La technologie OCR d'Amazon Textract nous a permis d'extraire le texte des documents. Les API PNL contextuelles d'Amazon Comprehend ont extrait du texte des entités spécifiques aux entreprises et leurs valeurs. Nous avons également intégré l'intervention humaine dans notre flux de travail en utilisant Amazon Augmented AI (Amazon A2I) pour que nos équipes examinent les données extraites et fournissent un retour d'information aux modèles ML et aident à les améliorer au fil du temps. L'utilisation de cette combinaison efficace du machine learning avec AppSync et Amplify nous a permis d'obtenir des informations plus précises sur les risques de la chaîne logistique de nos clients et leur a fait gagner des centaines d'heures dans l'examen manuel des documents. Ils peuvent désormais obtenir un retour d'information immédiat pour savoir si leur entreprise est exposée à un risque de non-conformité. »
 
-Corey Peters, responsable principal IA/ML chez Assent Compliance

SuccessKPI est une plateforme d'analytique de l'expérience qui permet aux entreprises du monde entier d'obtenir des informations sur l'expérience client, d'améliorer l'efficacité du personnel, et en fin de compte, d'obtenir des résultats commerciaux. Les principaux centres de contact du monde entier, à travers plusieurs fournisseurs de CaaS, utilisent la plateforme analytique de SuccessKPI.

« Comprendre le sentiment des clients sur différents produits ou services est essentiel pour comprendre l’état de l'entreprise. Amazon Comprehend Targeted Sentiment permet à nos clients non seulement de comprendre le sentiment pour une conversation, mais aussi d'approfondir des domaines spécifiques du produit ou de l'activité à l'échelle. »

-Praphul Kumar, Chef de produit, SuccessKPI

Gallup est une société mondiale spécialisée dans l'analytique et le conseil qui aide les organisations à mettre en œuvre des programmes d'activation et d'habilitation de la culture qui transforment la stratégie en action afin d'obtenir un engagement amélioré et durable des employés et des clients. Gallup Access est notre plateforme éprouvée pour le lieu de travail, utilisée pour la collecte de données, l'analytique et l'apprentissage afin de susciter de réels changements.

« Nous sommes très enthousiastes à l'égard de la fonctionnalité Amazon Comprehend Targeted Sentiment, car elle améliorera nos rapports existants sur les réponses aux enquêtes ouvertes dans Gallup Access. Nous établissons actuellement des rapports sur le sentiment général et, grâce à cette nouvelle fonctionnalité, nous serons en mesure de fournir un sentiment plus ciblé dans les réponses à l'enquête. La proposition de valeur de nos rapports globaux s'en trouvera améliorée et nos utilisateurs disposeront de données plus précises et exploitables.  »
 
-Swapan Golla, directeur de l'analytique, Gallup.

Le logiciel TeraDact Solutions propose une alternative fiable pour le partage sécurisé d'informations, dans un monde où les problèmes de conformité et de confidentialité sont plus présents que jamais. Grâce à leurs capacités de signature Information Identification & Presentation (IIaP™), les outils TeraDact offrent à l'utilisateur un environnement de partage d'informations sécurisé.

« L'utilisation d'Amazon Comprehend pour la rédaction des informations personnelles avec notre système de jetons nous permet non seulement d'atteindre un plus grand nombre de nos utilisateurs, mais également de surmonter les limites de la détection des informations personnelles basées sur des règles, pouvant entraîner de fausses alarmes ou des détails manquants. La détection des informations personnelles s'avère d'une importance critique pour les entreprises, et avec la puissance des modèles NLP contextuels de Comprehend, nous pouvons maintenir la confiance que les clients nous accordent concernant leurs informations. Amazon innove de manière à ce que nous puissions faire évoluer nos affaires, en ajoutant de nouvelles fonctionnalités essentielles à notre gamme de produits. »

– Chris Schrichte, PDG, TeraDact Solutions, Inc.

Le besoin en énergie est universel. C'est pourquoi ExxonMobil lance de nouvelles recherches et développe de nouvelles technologies pour réduire les émissions tout en créant des carburants et des lubrifiants plus efficaces. ExxonMobil s'engage à répondre de manière responsable aux besoins énergétiques du monde. 

Les mises en œuvre numériques d'AWS et d'Amazon Business dans l'organisation des achats d'ExxonMobil améliorent ses opérations à l'échelle mondiale et préparent l'entreprise à d'éventuelles perturbations inattendues.  « Nous avons travaillé avec Amazon ML Solutions Lab pour développer une preuve de concept destinée à optimiser l'utilisation des contrats et à réduire davantage les coûts. L'une des approches tire parti d'Amazon SageMaker pour améliorer l'identification des articles du catalogue les mieux adaptés à partir d'entrées en texte libre dans Smart by GEP, le système d'achat électronique d'ExxonMobil. Lorsque les descriptions des articles du catalogue ne sont pas disponibles, nous utilisons Amazon Comprehend pour créer un modèle de classification sur mesure pour associer des entrées en texte libre aux accords contractuels des fournisseurs. » 
 
-Mariano Matzkin, Global MRO Procurement Manager, ExxonMobil
 
Lire le billet de blog invité pour en savoir plus

La FINRA est une organisation à but non lucratif dédiée à la protection des investisseurs et à l'intégrité du marché. Elle régule un domaine essentiel du secteur des titres : les sociétés de courtage qui travaillent avec le grand public aux États-Unis.

« La FINRA reçoit des millions de documents contenant des données non structurées pour les processus de recherche, d'examen et de conformité. Nos enquêteurs et examinateurs ont dû parcourir des documents page après page ou effectuer des recherches très spécifiques pour trouver ce dont ils avaient besoin. Avec Amazon Comprehend, nous pouvons extraire rapidement les individus et les organisations, faire correspondre les entités extraites aux enregistrements FINRA, signaler les intérêts individuels et détecter les similitudes avec d'autres documents. »
 
– Dmytro Dolgopolov, directeur technique principal, FINRA

VidMob est une plateforme technologique qui met en relation les spécialistes du marketing avec un réseau mondial de rédacteurs, d'animateurs et de graphistes spécialisés.

« Amazon Comprehend et Amazon Transcribe permettent à VidMob de développer une analyse de texte en machine learning de grande qualité dans notre suite Agile Creative, ce qui nous a permis d'aider les clients de la marque à comprendre les performances de contenu d'une façon impossible jusqu'alors. Nous sommes en mesure de retranscrire le texte d'un contenu vidéo et de l'analyser au moyen de Comprehend, ce qui nous permet de mettre à jour des informations précieuses à la fois pour notre communauté de créateurs et pour nos clients, leur donnant ainsi un avantage stratégique au sein du marché. »
 
– Alex Collmer, fondateur et directeur général, VidMob

PubNub est le principal fournisseur d'API en temps réel pour la création d'applications de chat, de contrôle des appareils ainsi que de mappage en temps réel.

« Chez PubNub, nous avons constaté que le chat et la collaboration ont émergé en tant que cas d'utilisation dominant chez notre clientèle mondiale… Combinées à d'autres offres d'IA comme Amazon Polly (synthèse vocale), Amazon Comprehend (NLP) et Amazon Lex (chatbots), ces solutions aideront à rendre les applications de chat plus intelligentes et faciliteront à terme la croissance de nos clients à l'international grâce à une fonctionnalité de chat haute performance et localisée. »
 
– David Hegarty, directeur de la gestion des produits, PubNub

ClearView Social offre un outil de partage des réseaux sociaux en un seul clic pour accroître l'engagement des employés.

« Nous utilisons Amazon Comprehend pour lire un article et extraire les sujets, qui sont automatiquement balisés à l'aide du machine learning. Amazon Comprehend balise des entités en toute confiance et nous permet de réaliser des estimations de gains multimédias plus précises afin de déterminer réellement le retour sur investissement dans les réseaux sociaux. Avant, nous voyions la valeur des médias comme une estimation extrêmement vague mais ça, c'était avant. »
 
– Bill Boulden, Directeur technique de ClearView Social

VideoPeel est une plateforme vidéo qui permet aux marques de collecter, gérer et publier des témoignages de consommateurs.

« Nous transformons les méthodes traditionnelles de recherche sur les consommateurs en introduisant la vidéo et en automatisant l'analyse de cette vidéo pour créer des personnages de consommateurs exploitables et dynamiques. En intégrant les technologies d'IA et de machine learning d'Amazon, comme Amazon Transcribe, Amazon Comprehend et Amazon Rekognition, nous sommes en mesure de prendre ces vidéos, de les analyser et de créer des profils de chaque individu. »
 
– Patrick Tedjamulia, co-fondateur et PDG de VideoPeel

Vision Critical conçoit des logiciels d'intelligence relationnelle orientés client, permettant aux grandes entreprises d'être plus rapides, plus réactives et plus axées sur leurs clients.

« Notre plateforme Spark connecte vos données clients les plus importantes provenant de toutes les sources, y compris les données transactionnelles, d’attitude, émotionnelles et intentionnelles, pour créer des profils clients dynamiques permettant à chaque système d’équipes et d’entreprises d’avoir une vue unifiée du client. En s'intégrant à la fonctionnalité d'analyse de sentiments d'Amazon Comprehend, la plateforme peut désormais transformer des retours d'informations clients d'ordre qualitatif en informations exploitables, afin de déterminer, avec un niveau de précision supérieur à 90 %, si ces retours d'informations sont positifs, négatifs ou neutres. »
 
– Nicholas Simon, responsable produits de Vision Critical

TINT aide les spécialistes du marketing B2C à trouver, gérer et afficher le contenu le plus efficace des réseaux sociaux généré par les clients dans leur marketing.

« Notre activité est centrée sur la livraison du meilleur contenu marketing possible pour les marques qui dépendent de nous. En utilisant Amazon Comprehend, nous avons pu augmenter significativement la qualité et la précision des capacités d'analyse de contenu de notre plateforme, qui identifie le bon contenu pour les campagnes de marketing les plus percutantes. Amazon Comprehend nous permet de nous concentrer sur notre produit de base et de ne pas nous soucier de la complexité associée à la construction de nos propres modèles de machine learning ».
 
– Ryo Chiba, directeur technique de TINT

La plateforme d'engagement mobile Vibes permet aux spécialistes du marketing d'être en contact individuel avec les consommateurs hyper-connectés d'aujourd'hui à grande échelle.

« La messagerie mobile permet de connecter les marques et les consommateurs de manière directe, personnelle et authentique. Vibes traite des milliards de messages mobiles tous les mois, et l'énorme quantité de messages que nous gérons comporte des informations approfondies latentes. Amazon Comprehend nous permet d'extraire rapidement les expressions clés, de détecter les sentiments et de modéliser des thématiques à partir du contenu de messages non structurés, ce qui permet aux spécialistes du marketing d'avoir une meilleure compréhension de leurs performances et des informations exploitables pour offrir des expériences clients enrichissantes. »

– Brian Garofola, directeur technique, Vibes

LexisNexis Legal & Professional est un fournisseur mondial de solutions de contenu et de solutions technologiques pour les professionnels du droit et des affaires. Il sert des clients dans plus de 175 pays et met à leur disposition plus de 2 milliards d'archives consultables.

« Nous fournissons aux professionnels du droit des recherches et des analyses approfondies pour les aider à prendre des décisions éclairées. Par conséquent, nous sommes toujours à la recherche de meilleurs moyens de découvrir des informations à partir de documents juridiques. Grâce au machine learning (ML) d'Amazon Comprehend, nous pouvons désormais créer des modèles de reconnaissance d'entités personnalisés et précis sans entrer dans les complexités associées au machine learning. Les entités qui comptent le plus pour nous, comme les juges et les avocats, peuvent être identifiées rapidement parmi plus de 200 millions de documents avec une précision de plus de 92 %. »
 
– Rick McFarland, directeur des données chez LexisNexis

En savoir plus sur les fonctionnalités d'Amazon Comprehend

Consulter la page des fonctions
Prêt à vous lancer ?
S'inscrire
D'autres questions ?
Contactez-nous