Domande generali

D: Cos'è Amazon Rekognition?

Amazon Rekognition è un servizio che facilita l'aggiunta di efficaci analisi visive alle applicazioni. Rekognition Image consente di creare facilmente potenti applicazioni per cercare, verificare e organizzare milioni di immagini. Rekognition Video consente di estrarre il contesto dai video salvati o dai flussi in diretta in base al movimento, aiutandoti ad analizzarli.

Rekognition Image è un servizio di riconoscimento delle immagini che rileva oggetti, scene e volti, estrae il testo, riconosce i personaggi famosi e individua i contenuti inappropriati nelle immagini. Consente anche di ricercare e confrontare i volti. Rekognition Image si basa sulla stessa collaudata tecnologia di apprendimento profondo altamente scalabile sviluppata dagli esperti di visione artificiale di Amazon che permette di analizzare quotidianamente miliardi di immagini per Prime Photos.

Rekognition Image utilizza modelli di rete neurale profonda per rilevare ed etichettare migliaia di oggetti e scene nelle tue immagini e continua ad aggiungere al servizio nuove etichette e caratteristiche di riconoscimento dei volti. Con Rekognition Image paghi solo in base alle immagini che analizzi e ai metadati dei volti che memorizzi.

Rekognition Video è un servizio di riconoscimento video che rileva le attività, interpreta i movimenti delle persone in un filmato e riconosce oggetti, personaggi famosi e contenuti inappropriati nei video archiviati in Amazon S3 e nei flussi in diretta di Acuity. Rekognition Video rileva le persone e le segue nel video anche quando i loro volti non sono visibili e quando la persona esce o entra nell'inquadratura. Ad esempio, può essere utile in un'applicazione che invia notifiche in tempo reale quando qualcuno consegna un pacco alla porta. Rekognition Video consente anche di indicizzare i metadati, come oggetti, attività, scene, personaggi famosi e volti, agevolando la ricerca nel video.

D: Cos'è l'apprendimento profondo?

L'apprendimento profondo è un sottocampo dell'apprendimento automatico e una significativa branca dell'intelligenza artificiale. Ha lo scopo di dedurre astrazioni ad alti livelli da dati non elaborati utilizzando un grafico profondo con più livelli di elaborazione composto di più trasformazioni lineari e non lineari. L'apprendimento profondo si basa vagamente sui modelli di elaborazione e comunicazione delle informazioni del cervello. L'apprendimento profondo sostituisce caratteristiche ottenute manualmente con quelle apprese da grandi quantità di dati annotati. L'apprendimento si verifica attraverso la valutazione iterativa di centinaia di migliaia di parametri nel grafico profondo con algoritmi efficienti.

Diverse architetture di apprendimento profondo come le reti neurali profonde convoluzionali (CNN, Convolutional Neural Network) e le reti neurali ricorsive sono state applicate a visione artificiale, riconoscimento vocale, elaborazione del linguaggio naturale e riconoscimento audio per ottenere risultati innovativi su varie attività.

Amazon Rekognition fa parte della famiglia di servizi Amazon AI. I servizi Amazon AI utilizzano l'apprendimento profondo per comprendere immagini, trasformare testo in linguaggio parlato e creare interfacce vocali e di testo conversazionale intuitive.

D: Devo avere esperienza nell'apprendimento profondo per utilizzare Amazon Rekognition?

No. Con Amazon Rekognition non occorre creare, gestire o aggiornare pipeline di apprendimento profondo.

Per ottenere risultati accurati su complesse attività di visione artificiale come il rilevamento di oggetti e scene, l'analisi dei volti e il riconoscimento facciale, i sistemi di apprendimento profondo devono essere accuratamente calibrati e programmati con enormi quantità di dati acquisiti sul campo. L'approvvigionamento, la pulizia e l'etichettatura accurate dei dati sono attività costose e molto lunghe. Inoltre, formare una rete neurale profonda è un'operazione costosa dal punto di vista computazionale e spesso richiede hardware personalizzato realizzato utilizzando unità di elaborazione grafica (GPU).

Amazon Rekognition è interamente gestito e viene fornito già programmato per attività di riconoscimento delle immagini, affinché non sia necessario investire tempo e risorse nella creazione di una pipeline di apprendimento profondo. Amazon Rekognition continua a migliorare l'accuratezza dei propri modelli basando la propria attività su nuovi dati di apprendimento relativi a ricerca e approvvigionamento. Questo ti permette di concentrarti su progettazione e sviluppo di applicazioni di alto valore.

D: Quali sono gli utilizzi più comuni per Amazon Rekognition?

Tra gli utilizzi più comuni per Rekognition Image ti segnaliamo:

  • Liberia di immagini disponibile per la ricerca
  • Verifica utente basata sul volto
  • Analisi delle emozioni
  • Riconoscimento facciale
  • Moderazione di immagini

Tra gli utilizzi più comuni per Rekognition Video:

  • Ricerca di indici per gli archivi video
  • Facile filtraggio dei video per rilevare contenuti espliciti e osceni

D: Come si inizia a usare Amazon Rekognition?  

Se non sei già registrato su Amazon Rekognition, puoi fare clic sul pulsante "Prova Amazon Rekognition" nella pagina Amazon Rekognition e completare la procedura di registrazione. Devi disporre di un account Amazon Web Services; qualora non lo avessi già, ti sarà richiesto di crearlo durante il processo di registrazione. Una volta completata la registrazione, prova Amazon Rekognition con le tue immagini e i tuoi video, utilizzando la Console di gestione Amazon Rekognition o scarica gli SDK di Amazon Rekognition per iniziare a creare le tue applicazioni. Per ulteriori informazioni, consulta la nostra Guida alle operazioni di base dettagliata.

D: Che tipo di API offre Amazon Rekognition? 

Amazon Rekognition Image offre API che consentono di rilevare oggetti e scene, rilevare e analizzare volti, riconoscere personaggi famosi e cercare volti simili in una raccolta; inoltre sono disponibili delle API per la gestione delle risorse. Rekognition Image offre anche API per confrontare i volti ed estrarre il testo, mentre Rekognition Video mette a disposizione delle API per seguire le persone e gestire i flussi in diretta da Acuity. Per ulteriori dettagli, consulta la Guida di riferimento alle API di Amazon Rekognition.

D: Quali formati di immagini e video supporta Amazon Rekognition? 

Attualmente Amazon Rekognition Image supporta i formati JPEG e PNG. Puoi inviare immagini anche come oggetti S3 o come array di byte. Amazon Rekognition Video consente di analizzare i video memorizzati nei bucket Amazon S3. Il video deve essere codificato con il codec H.264. I formati supportati sono MPEG-4 e MOV. Un codec è software o un hardware che comprime i dati per velocizzare il trasferimento, quindi decomprime i dati ricevuti riportandoli al formato originale. Il codec H.264 è diffusamente usato per la registrazione, la compressione e la distribuzione dei contenuti video. Un formato di file video può contenere uno o più codec. Se il tuo file video MOV o MPEG-4 non funziona con Rekognition Video, controlla che sia stato codificato con il codec H.264.

D: Quali sono la dimensioni dei file immagine utilizzabili con Amazon Rekognition? 

Amazon Rekognition Image supporta file immagine fino a 15 MB se vengono inviati come oggetti di S3 e fino a 5 MB se sono inviati come array di byte. Amazon Rekognition Video supporta file fino a 8 GB e fino a 2 ore di video se si tratta di file di S3.

D: In che modo la risoluzione delle immagini influisce sulla qualità dei risultati delle API di Rekognition Image? 

Amazon Rekognition può essere utilizzato su un'ampia gamma di risoluzioni immagine. Per risultati migliori, ti consigliamo di utilizzare VGA (640 x 480) o una risoluzione superiore. Una risoluzione inferiore a QVGA (320 x 240) può aumentare le possibilità che volti e oggetti non vengano rilevati, anche se le dimensioni minime delle immagini controllate da Amazon Rekognition sono 80 x 80 pixel.

D: Qual è la grandezza minima di un oggetto perché possa essere rilevato e analizzato da Amazon Rekognition Image? 

Come regola generale, assicurati che l'oggetto o il volto più piccolo presente nell'immagine sia almeno il 5% delle dimensioni (in pixel) della dimensione più piccola dell'immagine. Se ad esempio lavori con un'immagine di 1600 x 900, ogni dimensione del volto o dell'oggetto più piccolo deve essere di almeno 45 pixel.

D: In che modo la risoluzione del video influisce sulla qualità dei risultati delle API di Rekognition Video? 

Il sistema è programmato per riconoscere volti più grandi di 32 pixel (per la dimensione minore), che corrispondono a una dimensione minima del volto da riconoscere compresa tra circa 1/7 dello schermo più piccolo con risoluzione QVGA fino a 1/30 con risoluzione HD a 1080p. Ad esempio, con risoluzione VGA, si possono prevedere prestazioni inferiori per i volti più piccoli di 1/10 della dimensione minore dello schermo.

D: Quali altri fattori possono influire sulla qualità delle API di Rekognition Video? 

Oltre alla risoluzione del video, anche le immagini sfocate, le persone in rapido movimento, le condizioni di luminosità e la posa possono influire sulla qualità delle API.

D: Quali sono i contenuti video più adatti alle API di Rekognition Video? 

Questa API funziona nel modo migliore con video realizzati da privati e professionisti con campo visivo frontale in normali condizioni di luminosità e colore. Questa API non è testata per i video in bianco e nero, per i video a IR o per le condizioni di luminosità estreme. Con applicazioni sensibili ai falsi allarmi è consigliabile ignorare i dati in uscita con punteggio di affidabilità inferiore a un valore selezionato (specifico per le singole applicazioni).

D: In quali regioni AWS è disponibile Amazon Rekognition? 

Attualmente Amazon Rekognition è disponibile nelle regioni Stati Uniti orientali (Virginia settentrionale), Stati Uniti occidentali (Oregon), Stati Uniti orientali (Ohio) , UE (Irlanda), Asia Pacifico (Tokyo), Asia Pacifico (Sydney) e AWS GovCloud (Stati Uniti). Amazon Rekognition Video è disponibile nelle regioni Stati Uniti orientali (Virginia settentrionale), Stati Uniti occidentali (Oregon), Stati Uniti orientali (Ohio), UE (Irlanda), Asia Pacifico (Tokyo) e Asia Pacifico (Sydney). Amazon Rekognition Video in tempo reale è disponibile unicamente nelle regioni Stati Uniti orientali (Virginia settentrionale), Stati Uniti occidentali (Oregon), UE (Irlanda) e Asia Pacifico (Tokyo).

Rilevamento di oggetti e scene

D: Che cos'è un'etichetta?

Un'etichetta è un oggetto, una scena o un concetto rilevato in un'immagine in base ai relativi contenuti. Ad esempio, la foto di alcune persone su una spiaggia tropicale può contenere etichette come "Persona", "Acqua", "Sabbia", "Palma" e "Costume" (oggetti), "Spiaggia" (scena) e "Esterno" (concetto).

D: Cos'è un punteggio di affidabilità e come si usa?

Il punteggio di affidabilità è un numero compreso tra 0 e 100 che indica la probabilità che una data previsione sia corretta. Ad esempio, se nella spiaggia tropicale il processo di rilevamento di oggetti e scene restituisce un punteggio di affidabilità di 99 per l'etichetta "Acqua" e di 35 per l'etichetta "Palma", è più probabile che l'immagine contenga acqua piuttosto che una palma.

Le applicazioni molto sensibili al rilevamento di errori (falsi positivi) devono ignorare risultati associati a punteggi di affidabilità inferiori a una determinata soglia. La soglia ottimale dipende dall'applicazione. In molti casi otterrai la migliore esperienza utente impostando valori di affidabilità minimi più alti rispetto al valore predefinito.

D: Cosa si intende per rilevamento di oggetti e scene? 

Per rilevamento di oggetti e scene si intende il processo di analisi di un'immagine o di un video per l'assegnazione di etichette in base al contenuto visivo. Amazon Rekognition Image esegue questo processo attraverso l'API DetectLabels. Questa API ti consente di identificare automaticamente migliaia di oggetti, scene e concetti e restituisce un punteggio di affidabilità per ogni etichetta. DetectLabels utilizza una soglia di sicurezza predefinita di 50. Il rilevamento di oggetti e scene è ideale per i clienti che desiderano cercare e organizzare grandi raccolte di immagini, incluse applicazioni per i consumatori e lo stile di vita che dipendono da contenuto generato dall'utente e da aziende di tecnologia pubblicitaria che desiderano migliorare i propri algoritmi di targeting.

D: Quali tipi di etichette supporta Amazon Rekognition?  

Rekognition supporta migliaia di etichette appartenenti a categorie comuni incluse, senza alcuna limitazione:

  • Persone ed eventi: "Matrimonio", "Sposa", "Bimbo", "Torta di compleanno", "Chitarrista", ecc.
  • Alimenti e bevande: "Mela", "Panino", "Vino", "Dolce", "Pizza", ecc.
  • Natura e aria aperta: "Spiaggia", "Montagne", "Lago", "Tramonto", "Arcobaleno", ecc.
  • Animali selvatici e domestici: "Cane", "Gatto", "Cavallo", "Tigre", "Tartaruga", ecc.
  • Casa e giardino: "Letto", "Tavolo", "Cortile", "Candeliere", "Camera da letto", ecc.
  • Sport e divertimenti: "Golf", "Basket", "Hockey", "Tennis", "Escursionismo", ecc.
  • Piante e fiori: "Rosa", "Tulipano", "Palma", "Foresta", "Bambù", ecc.
  • Arte e intrattenimento: "Scultura", "Pittura", "Chitarra", "Balletto", "Mosaico", ecc.
  • Trasporti e veicoli: "Aeroplano", "Automobile", "Bicicletta", "Motocicletta", "Camion", ecc.
  • Elettronica: "Computer", "Telefono cellulare", "Videocamera", "TV", "Auricolari", ecc.

D: In che modo il rilevamento di oggetti e scene differisce nel caso dell'analisi dei video?

Rekognition Video consente di individuare automaticamente migliaia di oggetti (come veicoli o animali domestici) e di attività (come i festeggiamenti o le danze). Fornisce anche le indicazioni di data/ora e un punteggio di affidabilità per ciascuna etichetta. Inoltre si basa sul movimento e sul contesto temporale del video per individuare con precisione attività complesse, come "soffiare su un candela" o "spegnere un incendio".

D: Non trovo l'etichetta di cui ho bisogno. Come posso richiedere una nuova etichetta?

Invia le tue richieste tramite il supporto clienti di AWS. Il catalogo di etichette di Amazon Rekognition è in continua espansione grazie ai suggerimenti dei clienti.

Rilevamento di contenuti non sicuri

D: Cos'è il rilevamento di contenuti non sicuri?

La funzione di rilevamento di contenuti non sicuri di Amazon Rekognition si basa sull'intuitiva API di apprendimento profondo Unsafe Image Detection e consente di rilevare contenuti espliciti e osceni nelle immagini. Gli sviluppatori potranno usare questi metadati aggiuntivi per filtrare contenuti ritenuti inappropriati a seconda delle necessità dell'applicazione. Oltre a contrassegnare le immagini in base alla presenza di contenuti per adulti, questa funzione restituisce un elenco di etichette suddiviso in gerarchie con un punteggio di affidabilità. Queste etichette indicano categorie specifiche di contenuti per adulti, fornendo pertanto ulteriore controllo agli sviluppatori sul filtraggio e il controllo di grandi volumi di contenuti generati dagli utenti. Questa API può essere impiegata in flussi di lavoro di moderazione per applicazioni quali social network, app di incontri, piattaforme di condivisione di immagini, blog, forum, applicazioni per bambini, siti di e-commerce, servizi di intrattenimento e piattaforme di inserzioni online.

D: Quali tipi di contenuti per adulti espliciti e osceni è in grado di rilevare Amazon Rekognition?

Amazon Rekognition è in grado di rilevare nelle immagini i seguenti tipi di contenuti espliciti e osceni per adulti:

  • Nudità esplicita
  • Nudità
  • Contenuti sessuali espliciti (maschili)
  • Contenuti sessuali espliciti (femminili)
  • Atti sessuali
  • Nudità parziale
  • Contenuti osceni
  • Costumi da bagno o biancheria femminili
  • Costumi da bagno o biancheria maschili
  • Abbigliamento provocante

L'API Unsafe Image Detection di Amazon Rekognition restituisce una gerarchia di etichette e un punteggio di affidabilità per ciascuna etichetta. Ad esempio, data una specifica immagine inappropriata, Rekognition restituirà un messaggio di "nudità esplicita" con un punteggio di affidabilità di livello più alto. Gli sviluppatori potranno utilizzare questa caratteristica per contrassegnare i contenuti. Nella stessa sessione, Rekognition può anche restituire un secondo livello di granularità fornendo ulteriore contesto, ad esempio indicando che la presenza di contenuti sessuali espliciti (maschili) con relativo punteggio di affidabilità. Queste informazioni possono permettere agli sviluppatori di creare una logica di filtraggio più complessa.

L'API Unsafe Image Detection tuttavia non è un'autorità affidabile, né intende essere un filtro completo per i contenuti per adulti espliciti e osceni. Inoltre non è in grado di rilevare eventuali contenuti illegali (ad esempio pedopornografia) o contenuti per adulti non naturali.

D: L'API Unsafe Image Detection di Amazon Rekognition è in grado di rilevare altri contenuti inappropriati, oltre ai contenuti per adulti espliciti e osceni?

Al momento Rekognition supporta solo le etichette elencate in precedenza. Tuttavia, AWS è aperto ai suggerimenti dei clienti per aggiungere nuove etichette e migliorare le etichette esistenti.
In caso di necessità, ad esempio se occorre il rilevamento di altri tipi di contenuti inappropriati, contattaci utilizzando la procedura illustrata più avanti.

D: In che modo il rilevamento di contenuti non sicuri differisce nel caso dell'analisi dei video?

Rekognition Video consente di individuare automaticamente i contenuti per adulti espliciti e osceni. Fornisce inoltre le indicazioni di data/ora e un punteggio di affidabilità per ogni etichetta relativa al tipo di contenuto.

D: Come posso avere la certezza che sia adatto alle mie esigenze di rilevamento di immagini e video per adulti?

I modelli per di rilevamento di Rekognition sono stati ottimizzati e testati in modo approfondito, ma consigliamo comunque di misurare la precisione sui set di dati in uso per valutare le prestazioni.

È possibile utilizzare il parametro "MinConfidence" nelle richieste all'API per equilibrare il rilevamento dei contenuti (recupero) con l'affidabilità del rilevamento (precisione). Riducendo il valore del parametro, sarà più facile rilevare la maggior parte dei contenuti inappropriati, ma sarà anche più probabile che vengano contrassegnati anche contenuti che non sono osceni né espliciti. Aumentando il valore del parametro si riducono i falsi positivi ma alcune immagini con contenuti espliciti e osceni potrebbero essere ignorate. Per alcuni esempi di utilizzo del parametro "MinConfidence" per le immagini, consulta la documentazione qui allegata.

Nel caso in cui Rekognition non rilevasse contenuti per adulti nelle immagini o nei video, contattaci utilizzando la procedura di feedback spiegata di seguito.

D: Come posso fornire un feedback su Rekognition, per migliorare le funzionalità di rilevamento dei contenuti non sicuri? 

Invia le tue richieste tramite il supporto clienti di AWS. Grazie ai feedback dei clienti, Amazon Rekognition espande costantemente i tipi di contenuti inappropriati rilevati. Generalmente, l'aggiunta di un nuovo tipo di contenuto esplicito o osceno richiede dalle 6 alle 8 settimane. I contenuti illegali (ad esempio la pedopornografia) non saranno accettati ai fini della procedura.

Analisi facciale

D: Cos'è l'analisi facciale?

L'analisi facciale consiste nel rilevamento di un volto all'interno di un'immagine e nell'estrazione dei relativi attributi. Amazon Rekognition Image restituisce la cornice per ogni volto rilevato in un'immagine, insieme ad attributi come sesso, presenza di occhiali da sole e punti di riferimento del volto. Rekognition Video restituirà i volti rilevati in un video con le indicazioni di data/ora e per ciascun volto rilevato indicherà la posizione e la cornice insieme ai punti di riferimento del volto.

D: Quali attributi facciali posso ottenere da Amazon Rekognition?

Oltre a una cornice e a un punteggio di affidabilità per ogni attributo, Amazon Rekognition restituisce i seguenti attributi facciali per ogni volto rilevato:

  • Sesso
  • Sorriso
  • Emozioni
  • Occhiali da vista
  • Occhiali da sole
  • Occhi aperti
  • Bocca aperta
  • Baffi
  • Barba
  • Posa
  • Qualità
  • Punti di riferimento

D: Che cos'è la posa del volto?

Per posa del volto si intende la rotazione di un volto rilevato sugli assi di beccheggio, rollio e imbardata. Ognuno di questi parametri viene restituito come un angolo compreso tra -180° e 180°. La posa del volto può essere utilizzata per trovare l'orientamento del poligono che circonda il viso (in opposizione alla cornice rettangolare), per misurare la deformazione, per tenere traccia dei visi in modo accurato e altro ancora.

D: Cosa si intende per qualità del volto?

La qualità del volto descrive la qualità dell'immagine del volto rilevato utilizzando due parametri: nitidezza e luminosità. Entrambi i parametri vengono restituiti come valori compresi tra 0 e 1. A questi parametri può essere applicata una soglia per filtrare volti nitidi e bene illuminati. È utile per le applicazioni che funzionano meglio con immagini di volti di alta qualità, come nel caso del confronto facciale e del riconoscimento facciale.

D: Cosa sono i punti di riferimento del volto? 

I punti di riferimento del volto sono un insieme di punti salienti, generalmente posizionati agli angoli, alle estremità e al centro dei principali componenti facciali come gli occhi, il naso e la bocca. L'API DetectFaces di Amazon Rekognition restituisce un insieme di punti di riferimento del volto che è possibile utilizzare per ritagliare volti, eseguire il morphing per trasformare un volto in un altro, sovrapporre maschere personalizzate per creare filtri specifici e altro.

D: Quanti volti è possibile rilevare in un'immagine?

Amazon Rekognition permette di rilevare fino a 100 volti in un'immagine.

D: In che modo l'analisi facciale differisce nel caso dell'analisi dei video?

Rekognition Video consente di individuare i volti in un video e analizzarne le caratteristiche, ad esempio se stanno sorridendo, se gli occhi sono aperti o se mostrano emozioni. Rekognition Video restituirà i volti rilevati con le indicazioni di data/ora e per ciascun volto rilevato indicherà la posizione e fornirà la cornice, insieme a punti di riferimento come occhio sinistro, occhio destro, naso, angolo sinistro della bocca e angolo destro della bocca. Queste informazioni sulla posizione e sulla data/ora si possono utilizzare per seguire facilmente le sensazioni degli utenti nel tempo e aggiungere ulteriori funzionalità come riquadri automatici, evidenziazione o ritaglio.

D: Oltre alla risoluzione del video, quali altri fattori possono influire sulla qualità delle API di Rekognition Video?

Oltre alla risoluzione del video, anche la qualità e i volti significativi, insieme alla parte di raccolta in cui si esegue la ricerca, hanno un impatto notevole. Utilizzando più istanze del volto di una stessa persona con varianti come barba, occhiali, pose diverse (di profilo e frontale) si miglioreranno significativamente i risultati. Generalmente le persone che si muovono molto velocemente e i video sfocati possono determinare una qualità inferiore.

Confronto facciale

D: Che cos'è il confronto facciale? 

Il confronto facciale è il processo che consente di confrontare un volto con uno o più altri volti per valutarne la somiglianza. Utilizzando l'API CompareFaces, Amazon Rekognition Image consente di misurare la probabilità che i volti presenti in due immagini diverse appartenga alla stessa persona. L'API confronta un volto individuato nell'immagine originale con ogni volto rilevato nell'immagine di destinazione e restituisce un punteggio di somiglianza per ogni confronto. Per ogni faccia rilevata si avranno anche una cornice e un punteggio di affidabilità. Il confronto facciale può essere utilizzato anche per verificare l'identità di una persona confrontandola con foto presenti in archivio quasi in tempo reale.

D: Posso utilizzare un'immagine di origine contenente più di un volto? 

Sì. Se l'immagine originale contiene più volti, CompareFaces rileva il più grande e lo confronta con ogni volto rilevato nell'immagine di destinazione.

D: Quanti volti posso confrontare?

Puoi confrontare un volto nell'immagine originale con un massimo di 15 volti rilevati nell'immagine di destinazione.

Riconoscimento facciale

D: Che cos'è il riconoscimento facciale?

Il riconoscimento facciale è il processo di identificazione o verifica dell'identità di una persona effettuato ricercando il suo volto in una raccolta di volti. Attraverso il riconoscimento facciale, potrai creare facilmente applicazioni avanzate che consentono ad esempio l'autenticazione a più fattori per i pagamenti bancari e l'ingresso automatizzato agli edifici per i dipendenti.

D: Cos'è una raccolta di volti e come posso crearne una?  

Una raccolta di volti è un indice di vettori caratteristici dei volti, da te posseduto e gestito, in cui è possibile eseguire ricerche. Mediante l'utilizzo dell'API CreateCollection puoi facilmente creare una raccolta in una regione AWS supportata e tornare a un Amazon Resource Name (ARN). Ogni raccolta di volti dispone di un CollectionId univoco associato.

D: Come posso aggiungere o eliminare volti da una raccolta?  

Per aggiungere un volto a una raccolta esistente, utilizza l'API IndexFaces. Questa API accetta un'immagine sotto forma di oggetto di S3 o matrice di byte immagine e aggiunge una rappresentazione dei vettori dei volti rilevati alla raccolta. IndexFaces restituisce inoltre un FaceId univoco e una cornice per ogni volto aggiunto.

Per eliminare un volto da una raccolta esistente, utilizza l'API DeleteFaces. Questa API agisce sulla raccolta di volti fornita (utilizzando un CollectionId) e rimuove le voci corrispondenti all'elenco di FaceId. Per ulteriori informazioni sull'aggiunta e l'eliminazione di volti, consulta il nostro esempio di gestione delle raccolte.

D: Come posso cercare un volto nella raccolta?  

Dopo aver creato una raccolta indicizzata di volti, puoi cercare un volto utilizzando un'immagine (SearchFaceByImage) o un FaceId (SearchFaces). Queste API acquisiscono un volto iniziale e restituiscono una serie di volti corrispondenti ordinati in base al punteggio di somiglianza, con al primo posto il volto che ha ottenuto il punteggio più alto. Per ulteriori dettagli, consulta il nostro esempio di ricerca dei volti.

D: In che modo il riconoscimento facciale differisce nel caso dell'analisi dei video?

Rekognition Video consente di eseguire ricerche dei volti in tempo reale in raccolte contenenti decine di milioni di volti. Innanzitutto si crea una raccolta di volti nella quale si possono memorizzare volti costituiti da rappresentazioni vettoriali dei tratti somatici. Rekognition esegue quindi la ricerca nella raccolta dei volti per individuare volti visivamente simili in tutto il video. Per ciascun volto presente nel video, Rekognition restituirà un punteggio di affidabilità, consentendo di visualizzare le possibili corrispondenze direttamente nell'applicazione.

D: Oltre alla risoluzione del video, quali altri fattori possono influire sulla qualità delle API Video?

Oltre alla risoluzione del video, anche la qualità e i volti significativi, insieme alla parte di raccolta in cui si esegue la ricerca, hanno un impatto notevole. Utilizzando più istanze del volto di una stessa persona con varianti come barba, occhiali, pose diverse (di profilo e frontale) si miglioreranno significativamente i risultati. Generalmente le persone che si muovono molto velocemente possono ridurre la qualità del riconoscimento. Inoltre, i video sfocati potrebbero presentare una qualità inferiore.

Riconoscimento di volti celebri

D: Che cos'è il riconoscimento di volti celebri?

Il riconoscimento di volti celebri di Amazon Rekognition è una nuova funzionalità basata su algoritmi di apprendimento approfondito con cui puoi individuare, mediante un'API molto intuitiva, volti di celebrità e personaggi famosi o noti nel loro campo. L'API RecognizeCelebrities può essere usata su vasta scala e riconosce le celebrità in diverse categorie, tra cui politica, sport, affari, intrattenimento e media. Questa nuova funzionalità risulterà particolarmente utile ai clienti a cui occorrono librerie di immagini digitali indicizzabili e ricercabili in base ai personaggi celebri di loro interesse.

D: A chi è rivolta l'API RecognizeCelebrities?

Amazon Rekognition è in grado di identificare solo le celebrità per cui il modello di apprendimento approfondito è stato addestrato. L'API RecognizeCelebrities non costituisce un'autorità, né intende esserlo, per la creazione di elenchi di celebrità. Si tratta di una caratteristica creata per includere il maggior numero di celebrità possibili, in base alle esigenze e ai feedback dei clienti. Vengono aggiunti costantemente nuovi nomi, ma il fatto che questa funzionalità non riconosca individui che potrebbero essere considerati noti secondo altri gruppi o clienti non riflette le nostre opinioni su chi debba o non debba essere considerato una celebrità. Se desideri che Rekognition sia in grado di identificare nuove celebrità, inviaci un feedback.

D: È possibile richiedere di rimuovere una celebrità dall'elenco di personaggi riconosciuti dall'API di Amazon Rekognition?

Sì. Se una celebrità desidera essere rimossa da questa funzionalità, può farne richiesta tramite e-mail al supporto clienti di AWS.

D: Quali riferimenti sono supportati per fornire informazioni aggiuntive su una celebrità?

L'API supporta un elenco opzionale di fonti da includere nella risposta informazioni sulla celebrità. Al momento è possibile indicare un URL dal sito IMDB, se disponibile. In futuro potranno essere aggiunte altre fonti.

D: In che modo il riconoscimento di volti celebri differisce nel caso dell'analisi dei video? 

Rekognition Video consente di individuare e riconoscere quando e dove appaiono persone famose in un video. I dati di uscita con codifica temporale includono il nome e un identificativo univoco della persona, le coordinate della cornice, un punteggio di affidabilità e gli URL dei contenuti correlati, ad esempio il collegamento alla pagina del personaggio su IMDB. La persona viene rilevata anche se a volte il suo volto non è visibile, nel video. Questa funzione consente di indicizzare e ricercare librerie di video digitali per utilizzi legati a esigenze specifiche di marketing e dei media.

D: Oltre alla risoluzione del video, quali altri fattori possono influire sulla qualità delle API di Rekognition Video? 

Le celebrità che si muovono molto velocemente e i video sfocati possono influire sulla qualità delle API di Rekognition Video. Inoltre, anche eventuale trucco pesante o camuffamento, comuni per gli attori e le attrici, possono influire sulla qualità.

Text in Image

D: Cos'è Text in Image?  

Text in Image è una caratteristica di Amazon Rekognition che permette di rilevare e riconoscere contenuti di testo all'interno di immagini, ad esempio nomi di strade, didascalie, nomi di prodotti e targhe di mezzi motorizzati. La funzione Text in Image è stata creata per il rilevamento di testo da fotografie, non solo da immagini di documenti. L'API DetectText di Amazon Rekognition si applica alle immagini e restituisce etichette di testo e cornici per ogni stringa di caratteri rilevata, con un punteggio di affidabilità. Nelle applicazioni di condivisione di immagini e di social networking, ad esempio, è possibile abilitare la ricerca visiva basata su un indice di immagini che contiene le stesse etichette di testo. Nelle applicazioni per media e intrattenimento, invece, è possibile creare metadati di testo che supportano la ricerca per i flussi video, ad esempio notizie, punteggi sportivi, pubblicità e sottotitoli. Nelle applicazioni di sicurezza e videosorveglianza, il servizio permette di identificare i veicoli in base ai numeri di targa dalle immagini scattate tramite body cam o autovelox.

D: Quali tipi di testo supporta la funzione Text in Image di Amazon Rekognition? 

La funzione Text in Image è stata creata per il rilevamento di testo da fotografie, non solo da immagini di documenti. Supporta i numeri e la maggior parte dei caratteri latini strutturati secondo layout, font e stili diversi e sovrapposti agli oggetti sullo sfondo, con diversi livelli di orientamento; ad esempio può rilevare le scritte in striscioni e poster. Text in Image è in grado di riconoscere fino a 50 sequenze di caratteri per immagine, elencandoli come parole e righe. Tuttavia, riconosce solo i testi con orientamento orizzontale e un massimo di 30° di inclinazione.

D: Come posso dare un feedback su Rekognition per migliorarne le funzionalità di riconoscimento del testo?

Invia le tue richieste tramite il supporto clienti di AWS. Grazie ai feedback dei clienti, Amazon Rekognition espande costantemente i tipi di testi riconosciuti.

Analisi video

D: Come funzionano le API asincrone di Amazon Rekognition Video?  

Rekognition Video elabora un video memorizzato in un bucket Amazon S3. La sequenza di elaborazione consiste in una serie di operazioni asincrone. Per avviare l'analisi del video richiamerai un'operazione Start come StartLabelDetection. Lo stato di completamento della richiesta viene pubblicato su un argomento di Amazon Simple Notification Service. Per conoscere lo stato di completamento dall'argomento Amazon SNS puoi utilizzare una coda Amazon Simple Queue Service o una funzione AWS Lambda. Una volta ottenuto lo stato di completamento, richiamerai un'operazione Get come GetLabelDetection per accedere ai risultati della richiesta.

 

D: Cos'è il monitoraggio delle persone? 

Con Rekognition Video, puoi monitorare ogni persona presente in un fotogramma e in tutto il video tra un fotogramma e l'altro. Rekognition Video rileva le persone anche quando la telecamera è in movimento e, per ciascuna persona, restituisce la cornice insieme alle caratteristiche del volto e alle indicazioni di data/ora. Nelle attività commerciali consente di ottenere informazioni dettagliate sui clienti, rilevando ad esempio come si muovono lungo i corridoi di un centro commerciale o per quanto tempo rimangono in fila alle casse.

D: Come posso analizzare i video in tempo reale?  

In modalità streaming puoi cercare i volti in tempo reale in una raccolta contenente decine di milioni di volti. Le API di Rekognition Video per il riconoscimento e il rilevamento facciale supportano l'integrazione nativa con il flusso video di Amazon Kinesis Video Streams, un servizio che consente agli sviluppatori di trasmettere migliaia di feed live e di metadati associati. Nell'ambito della sicurezza, questa caratteristica rende facile e precisa l'attività di identificazione in tempo reale delle persone di interesse.

D: Amazon Rekognition Video funziona con Amazon Kinesis Video Streams? 

Rekognition Video utilizza i flussi Kinesis Video Streams per elaborare i flussi video. I risultati dell'analisi vengono trasmessi da Rekognition Video a un flusso di dati di Kinesis e infine letti dalla tua applicazione client. Rekognition Video fornisce un processore di streaming utilizzabile per avviare e gestire l'analisi dei video in streaming. Per ulteriori informazioni, consulta la sezione Lavorare con i video in streaming.

Fatturazione

D: In che modo Amazon Rekognition conteggia le immagini elaborate?

Per le API che accettano immagini come input, Amazon Rekognition fa coincidere il numero delle immagini analizzate con il numero delle immagini elaborate. DetectLabels, DetectModerationLabels, DetectFaces, IndexFaces, RecognizeCelebrities e SearchFaceByImage appartengono a questa categoria. Per l'API CompareFaces, in cui due immagini vengono inviate come input, solo l'immagine di origine viene conteggiata come unità di immagini elaborate.

Per le chiamate API che non richiedono un'immagine come parametro di input, Amazon Rekognition conteggia ogni chiamata API come un'immagine elaborata. SearchFaces e ListFaces appartengono a questa categoria.

Le restanti API di Amazon Rekognition – DeleteFaces, CreateCollection, DeleteCollection e ListCollections – non concorrono a calcolare il numero delle immagini elaborate.

D: In che modo Amazon Rekognition conta i minuti dei video elaborati?

Per i video archiviati, Amazon Rekognition conta i minuti di video elaborati correttamente dall'API e li somma per la fatturazione. Per i flussi video in tempo reale ti verranno addebitati i blocchi di cinque secondi di video elaborati correttamente.

D: Per quali API Amazon Rekognition applica tariffe?

Amazon Rekognition Image addebita i costi relativi all'uso delle seguenti API: DetectLabels, DetectModerationLabels, DetectFaces, IndexFaces, RecognizeCelebrities, SearchFaceByImage, CompareFaces, SearchFaces e ListFaces. Amazon Rekognition Video addebita i costi in base alle durate (in minuti) dei video elaborati correttamente dalle API StartLabelDetection, StartFaceDetection, StartFaceDetection, SatrtContentModeration, StartPersonTracking, StartCelebrityRecognition, StartFaceSerach e StartStreamProcessor.

D: Quanto costa Amazon Rekognition?

Per informazioni sui prezzi correnti, consulta la pagina dei prezzi di Amazon Rekognition.

D: Mi verranno addebitati i vettori caratteristici archiviati nelle mie raccolte di volti?

Sì. Amazon Rekognition addebita 0,01 USD per 1.000 vettori caratteristici dei volti al mese. Per ulteriori dettagli, consulta la pagina dei prezzi.

D: Amazon Rekognition partecipa al piano gratuito di AWS?

Sì. Poiché hai accesso al piano di utilizzo gratuito di AWS, puoi iniziare a utilizzare Amazon Rekognition gratuitamente. Dopo l'iscrizione, i nuovi clienti Amazon Rekognition possono analizzare fino a 5.000 immagini gratuitamente ogni mese per i primi 12 mesi. Puoi utilizzare tutte le API di Amazon Rekognition con questo piano gratuito e perfino archiviare fino a 1.000 volti senza ulteriori addebiti. Inoltre, i clienti di Amazon Rekognition Video possono analizzare gratuitamente 1.000 minuti di video al mese per il primo anno.

D: I prezzi includono le tasse?

Per maggiori dettagli sulle tasse, consulta l'Assistenza di Amazon Web Services sulle imposte.

Integrazione con AWS

D: Amazon Rekognition Video funziona con le immagini archiviate in Amazon S3?

Sì. Puoi iniziare ad analizzare immagini archiviate in Amazon S3 semplicemente indirizzando l'API di Amazon Rekognition al tuo bucket di S3. Non è necessario che sposti i dati. Per ulteriori dettagli su come utilizzare oggetti di S3 con le chiamate API Amazon Rekognition, vedi il nostro esercizio sul rilevamento delle etichette.

D: È possibile utilizzare Amazon Rekognition con immagini memorizzate in un bucket Amazon S3 in un'altra regione?

No. Verifica che il bucket Amazon S3 che desideri utilizzare si trovi nella stessa regione degli endpoint per l'API di Amazon Rekognition.

D: Come posso elaborare più file di immagini in un batch utilizzando Amazon Rekognition?

Puoi elaborare le immagini di Amazon S3 in blocco seguendo le fasi descritte nel nostro esempio di elaborazione di batch in Amazon Rekognition su GitHub.

D: Come posso utilizzare AWS Lambda con Amazon Rekognition?

Amazon Rekognition consente di accedere facilmente ad AWS Lambda e ti permette di portare analisi di immagini basate sui trigger nei data store di AWS come Amazon S3 e Amazon DynamoDB. Per utilizzare Amazon Rekognition con AWS Lambda, segui la procedura riportata qui e seleziona il progetto di Amazon Rekognition.

D: È possibile utilizzare Amazon Rekognition con AWS CloudTrail?

Sì. Amazon Rekognition supporta la registrazione, sotto forma di file di log di evento in CloudTrail, delle seguenti operazioni: CreateCollection, DeleteCollection, CreateStreamProcessor, DeleteStreamProcessor, DescribeStreamProcessor, ListStreamProcessors e ListCollections. Per ulteriori informazioni sulle chiamate API Amazon Rekognition che si integrano con AWS CloudTrail, consulta il documento Logging Amazon Rekognition API Calls with AWS CloudTrail.

Privacy dei dati

D: Le immagini e i video da me inviati ed elaborati da Amazon Rekognition vengono archiviati? E come vengono utilizzati da AWS?

Amazon Rekognition può archiviare e utilizzare le immagini e i video elaborati dal servizio esclusivamente per fornire e mantenere il servizio, oltre che per migliorare e sviluppare la qualità di Amazon Rekognition e di altre tecnologie di apprendimento automatico e intelligenza artificiale di Amazon. L'utilizzo dei tuoi contenuti è necessario per migliorare continuamente la tua esperienza come cliente di Amazon Rekognition, anche grazie allo sviluppo e al perfezionamento delle tecnologie correlate. Non usiamo alcun dato di identificazione personale eventualmente presente nei tuoi contenuti per proporre prodotti, servizi o attività marketing a te o ai tuoi utenti finali. La tua fiducia, la tua privacy e la sicurezza dei tuoi contenuti rappresentano la nostra massima priorità. Implementiamo controlli scrupolosi e sofisticati, sia tecnici sia fisici (inclusa la crittografia su dati in transito e inattivi), progettati per impedire accessi non autorizzati e divulgazione di informazioni riservate e garantire che l'utilizzo dei contenuti da parte nostra sia conforme agli impegni presi nei tuoi confronti. Per ulteriori informazioni consulta la pagina https://aws.amazon.com/compliance/data-privacy-faq/.

D: Posso eliminare le immagini e i video da me inviati che sono stati archiviati da Amazon Rekognition?

Sì. Puoi richiedere l'eliminazione dei contenuti audio e video associati al tuo account contattando AWS Support. L'eliminazione delle immagini e dei video che hai inviato potrebbe compromettere la tua esperienza con Amazon Rekognition.

D: Chi ha accesso ai miei contenuti elaborati e archiviati da Amazon Rekognition?

Solo i dipendenti autorizzati avranno accesso ai tuoi contenuti elaborati da Amazon Rekognition. La tua fiducia, la tua privacy e la sicurezza dei tuoi contenuti rappresentano la nostra massima priorità. Implementiamo controlli adeguati e sofisticati, a livello tecnico e fisico, tra cui la crittografia sia in condizioni statiche che durante i trasferimenti, per impedire gli accessi non autorizzati e la divulgazione dei contenuti e per garantire che l'utilizzo da parte nostra sia conforme ai nostri impegni nei tuoi confronti. Per ulteriori informazioni consulta la pagina https://aws.amazon.com/compliance/data-privacy-faq/.

D: I miei contenuti elaborati e archiviati da Amazon Rekognition rimangono di mia proprietà?

Conservi sempre la proprietà dei tuoi contenuti. Li utilizzeremo solo con il tuo consenso.

D: I contenuti elaborati da Amazon Rekognition vengono trasferiti fuori dall'area AWS in cui utilizzo Amazon Rekognition?

Tutti i contenuti elaborati da Amazon Rekognition sono crittografati e memorizzati in condizioni statiche nella regione AWS in cui utilizzi Amazon Rekognition. I contenuti elaborati da Amazon Rekognition possono essere parzialmente archiviati in un'altra regione AWS esclusivamente per finalità di costante miglioramento e sviluppo della tua esperienza di cliente Amazon Rekognition e di altre tecnologie di apprendimento automatico e intelligenza artificiale di Amazon. Puoi richiedere l'eliminazione dei contenuti audio e video associati al tuo account contattando AWS Support. La tua fiducia, la tua privacy e la sicurezza dei tuoi contenuti rappresentano la nostra massima priorità. Implementiamo controlli adeguati e sofisticati, a livello tecnico e fisico, tra cui la crittografia sia in condizioni statiche che durante i trasferimenti, per impedire gli accessi non autorizzati e la divulgazione dei contenuti e per garantire che l'utilizzo da parte nostra sia conforme ai nostri impegni nei tuoi confronti. Per ulteriori informazioni consulta la pagina https://aws.amazon.com/compliance/data-privacy-faq/.

D: Posso usare Amazon Rekognition in connessione con siti Web, programmi o altre applicazioni rivolte o destinate a minori di 13 anni e soggette alle norme previste dal Children's Online Privacy Protection Act (COPPA)?

Sì. Ai sensi dei Termini di servizio di Amazon Rekognition, adempiuto l'obbligo di fornire il necessario preavviso e ottenuto il consenso dei genitori secondo quanto prescritto dal COPPA, è possibile utilizzare Amazon Rekognition in connessione con siti Web, programmi o altre applicazioni rivolte o destinate, del tutto o in parte, a minori di 13 anni.

D: In che modo è possibile determinare il un sito Web, programma o applicazione è soggetto al COPPA?

Per ottenere informazioni sui requisiti del COPPA e linee guida su come determinare se un sito Web, programma o applicazione è soggetta al COPPA, consulta direttamente le risorse fornite dalla United States Federal Trade Commission. Il sito offre informazioni su come determinare se un servizio è rivolto o destinato, del tutto o in parte, ai minori di 13 anni.

D: Amazon Rekognition è idoneo ai fini HIPAA?

Amazon Rekognition è un servizio idoneo ai fini HIPAA coperto dal BAA (Business Associate Addendum) di AWS. Se disponi di un BAA con AWS, Amazon Rekognition tratterà, divulgherà e conserverà le informazioni sanitarie protette solo se stabilito nei termini del contratto.

Controllo degli accessi

D: Come posso controllare l'accesso degli utenti ad Amazon Rekognition?

Amazon Rekognition è stato integrato con AWS Identity and Access Management (IAM). Le policy di AWS IAM possono essere utilizzate per garantire che solo gli utenti autorizzati abbiano accesso alle API di Amazon Rekognition. Per ulteriori dettagli, consulta la pagina del controllo degli accessi e dell'autenticazione di Amazon Rekognition.

Ulteriori informazioni sui prezzi di Amazon Rekognition

Visita la pagina dei prezzi
Ti senti pronto?
Inizia a usare AWS Rekognition
Hai ulteriori domande?
Contattaci