AWS 기술 블로그

Category: Amazon Bedrock

SF 시리즈: Amazon Bedrock 기반 IAM Policy 자동 생성 및 할당 🚀

SF 시리즈 소개 과거 공상과학(SF) 작품에서만 가능할 것 같았던 기술들이 이제는 AWS의 다양한 서비스와 기능을 통해 현실이 되고 있습니다. 이러한 혁신적인 기능들은 여러 서비스의 기능 조합과 복잡한 패턴을 필요로 하며, 이를 효과적으로 오케스트레이션할 수 있는 도구가 필수적입니다. AWS에서는 이러한 복잡한 프로세스를 손쉽게 설계하고 자동화할 수 있도록 AWS Step Functions을 제공합니다. Step Functions을 활용하면 복잡한 비즈니스 […]

Amazon Bedrock에서 DeepSeek-R1 Distilled Llama 모델 배포하기

오픈 파운데이션 모델(Open Foundation Models, FM)은 생성형AI 혁신의 초석이 되어, 조직들이 비용과 배치 전략을 통제하면서 AI 애플리케이션을 구축하고 맞춤화할 수 있도록 해줍니다. AI 커뮤니티는 공개적으로 이용 가능한 고품질의 모델을 제공함으로써, 개발자와 최종 사용자 모두에게 이익이 되는 신속한 반복, 지식 공유, 비용 효율적인 솔루션을 촉진합니다. AI 기술 발전에 주력하는 연구 회사인 DeepSeek AI는 이 생태계에 크게 […]

AI 응답성 최적화하기: Amazon Bedrock 지연 시간 최적화 추론에 대한 실용적인 가이드

이 글은 AWS Machine Learning 블로그의 Optimizing AI responsiveness: A practical guide to Amazon Bedrock latency-optimized inference by Ishan Singh, Ankur Desai, Rupinder Grewal, Vivek Singh, and Yanyan Zhang의 한국어 번역입니다. 상용 생성형AI 애플리케이션에서 반응성은 모델의 성능(정확도)만큼이나 중요합니다. 시간에 민감한 문의 사항을 처리하는 고객 서비스 팀이든, 즉각적인 코드 제안이 필요한 개발자이든, 지연 시간(대기 시간)으로 알려진 1초의 지연도 상당한 영향을 미칠 […]

비정형 데이터! Amazon Bedrock으로 제대로 활용하기

오늘날 기업들은 전례 없는 규모의 비정형 데이터를 보유하고 있습니다. 이메일, 문서, 이미지, 동영상, 소셜 미디어 게시물 등 다양한 형태의 비정형 데이터는 모든 엔터프라이즈 데이터에서 80%~90%를 차지하고 있으며, 정형 데이터보다 몇 배나 빠르게 증가하고 있습니다. 이러한 방대한 비정형 데이터에는 시장 트렌드, 고객 니즈, 운영상의 문제점 등 귀중한 인사이트가 있습니다. 하지만 약 18%의 기업만이 이러한 데이터를 효과적으로 […]

Amazon Bedrock과 Amazon Neptune으로 지식 그래프를 활용한 GraphRAG 애플리케이션 구축하기

이 글은 AWS Database 블로그의 Using knowledge graphs to build GraphRAG applications with Amazon Bedrock and Amazon Neptune의 한국어 번역입니다. 검색 증강 생성(Retrieval Augmented Generation, RAG)은 대규모 언어 모델과 외부 지식 소스를 결합하는 혁신적인 접근 방식으로, 더 정확하고 정보가 풍부한 콘텐츠 생성을 가능하게 합니다. 이 기술은 언어 모델의 맥락 이해 및 일관된 응답 생성 능력과 […]

생성형 AI로 실현하는 장애 대응부터 지식 자산화까지: Amazon Bedrock, Slack 그리고 Atlassian Confluence 통합 지능형 시스템

배경 및 문제 정의 현대의 IT 인프라 환경은 그 규모와 복잡성이 기하급수적으로 증가하고 있습니다. 클라우드 네이티브 아키텍처의 도입이나 마이크로서비스 기반 애플리케이션의 확산으로 기업의 IT 운영팀이 대응해야 할 영역은 지속적으로 확장되고 있습니다. 특히 시스템 전반에서 발생하는 다양한 종류의 로그 데이터, 메트릭 그리고 메시지들을 효과적으로 분석하고 신속하게 대응하는 것이 중요한 과제로 떠오르고 있습니다. 신속한 장애 대응의 필요성 […]

Amazon Bedrock Guardrails로 LLM 스트리밍 출력 보호하기

생성형 AI 기술의 발전과 함께, AI 모델의 입출력을 안전하고 신뢰할 수 있게 만드는 것이 중요한 과제로 대두되고 있습니다. 특히 대규모 언어 모델(LLM, Large Language Model)이 생성하는 콘텐츠를 제어하고 보호하는 메커니즘의 필요성이 더욱 커지고 있습니다. 이러한 배경에서 Amazon Bedrock에서는 Amazon Bedrock Guardrails라는 강력한 도구를 제공하여 LLM 애플리케이션의 안전성 및 신뢰성을 높이고 있습니다. Amazon Bedrock Guardrails는 기업들이 […]

Amazon Bedrock에서 교차 리전 추론 시작하기

이번 게시글은 AWS Machine Learning Blog에 게시된 Getting started with cross-region inference in Amazon Bedrock by Talha Chattha, Andrew Kane, Rupinder Grewal, and Sumit Kumar를 한국어 번역 및 편집하였으며, 현재 2025.02 기준으로 변경된 내용 (에: 가능 모델) 을 반영하여 작성되었습니다. 생성형 AI 솔루션의 등장으로 기업들이 파운데이션 모델을 도입하여 전례 없는 기회를 창출함에 따라, 산업 전반에서 […]

AWS AI Day Hackathon 고객 사례 3부: 카카오스타일의 AI 기반 맞춤형 여행 가이드 서비스

지난 11월 진행된 AWS AI Day Hackathon 2024에서 13개 기업들이 선보인 혁신적인 프로젝트들을 시리즈로 소개해 드리고자 합니다. 해커톤 고객 사례 시리즈를 통해 각 기업들이 Amazon Bedrock을 활용해 실제 비즈니스 과제를 어떻게 해결했는지, 기술적 접근 방식과 구현 과정에서의 인사이트를 심층적으로 다뤄보고자 합니다. 본 시리즈가 생성형 AI 도입을 고민하시는 분들께 실질적인 참고 사례가 되길 바랍니다. 해커톤의 전반적인 […]

AWS AI Day Hackathon 고객 사례 2부: 카카오스타일의 혁신적인 AI 코디 추천 서비스

지난 11월 진행된 AWS AI Day Hackathon 2024에서 13개 기업들이 선보인 혁신적인 프로젝트들을 시리즈로 소개해 드리고자 합니다. 해커톤 고객 사례 시리즈를 통해 각 기업들이 Amazon Bedrock을 활용해 실제 비즈니스 과제를 어떻게 해결했는지, 기술적 접근 방식과 구현 과정에서의 인사이트를 심층적으로 다뤄보고자 합니다. 본 시리즈가 생성형 AI 도입을 고민하시는 분들께 실질적인 참고 사례가 되길 바랍니다. 해커톤의 전반적인 […]