Experiência do desenvolvedor Amazon Bedrock

O Amazon Bedrock facilita que os desenvolvedores trabalhem com uma ampla variedade de modelos de base (FMs) de alto desempenho
Introdução ao modelo de base da Amazon, destacando os principais recursos e elementos de design

Escolha entre os principais FMs

O Amazon Bedrock torna a criação com uma variedade de FMs tão fácil quanto uma chamada de API. O Amazon Bedrock fornece acesso aos principais modelos, incluindo Jurassic da AI21 Labs, Claude da Anthropic, Command and Embed da Cohere, Llama 2 da Meta e Stable Diffusion da Stability AI, bem como nossos próprios modelos Amazon Titan. Com o Amazon Bedrock, você pode selecionar o FM mais adequado ao seu caso de uso e aos requisitos da aplicação.

Playground com gerador de imagens do Titan

Experimente usar os FMs para diferentes tarefas

Você pode experimentar facilmente diferentes FMs usando playgrounds interativos para várias modalidades, incluindo texto, chat e imagem. Os playgrounds permitem que você experimente vários modelos para seu caso de uso a fim de ter uma ideia da adequação do modelo para uma determinada tarefa.

avaliação automática de modelos

Avalie os FMs para selecionar o melhor para seu caso de uso (pré-visualização)

O Model Evaluation no Amazon Bedrock permite que você use avaliações automáticas e humanas para selecionar FMs para um caso de uso específico. A avaliação automática de modelos usa conjuntos de dados selecionados e fornece métricas predefinidas, incluindo precisão, robustez e toxicidade. Para métricas subjetivas, você pode usar o Amazon Bedrock para configurar um fluxo de trabalho de avaliação humana com alguns cliques. Com avaliações humanas, você pode trazer seus próprios conjuntos de dados e definir métricas personalizadas, como relevância, estilo e alinhamento com a voz da marca. Com os fluxos de trabalho de avaliação humana, você pode aproveitar seus funcionários como revisores. Também é possível contratar uma equipe gerenciada pela AWS para realizar a avaliação humana, em que a AWS contrata avaliadores qualificados e gerencia o fluxo de trabalho de ponta a ponta por você. Para saber mais, leia a publicação do blog.

Página de configuração exibindo as configurações para o modelo ajustado

Personalize FMs de forma privada com os dados

Com alguns cliques, o Amazon Bedrock permite que você passe de modelos genéricos para modelos especializados e personalizados para sua empresa e caso de uso. Para adaptar um FM para uma tarefa específica, você pode usar uma técnica chamada ajuste fino. Basta apontar alguns exemplos rotulados no Amazon S3 e o Amazon Bedrock faz uma cópia do modelo de base, o treina com esses dados e cria um modelo ajustado acessível somente a você, com respostas personalizadas. O ajuste fino está disponível para os modelos Command, Llama 2, Titan Text Lite and Express, Titan Image Generator e Titan Multimodal Embeddings. Uma segunda forma de adaptar os FMs Titan Text Lite e Express no Amazon Bedrock é com o pré-treinamento contínuo, uma técnica que usa conjuntos de dados não rotulados para personalizar o FM para um domínio ou setor. Com o ajuste fino e o pré-treinamento contínuo, o Amazon Bedrock cria uma cópia privada e personalizada do FM de base para você, e os dados não são usados para treinar os modelos de base originais. Os dados usados para personalizar os modelos são transferidos com segurança por meio da nuvem privada virtual (VPC) da Amazon. Para saber mais, leia a publicação do blog.

Uma imagem ilustrando o processo de solicitações de API, mostrando a comunicação entre duas entidades

API única

Use uma única API para realizar inferências, independentemente do modelo escolhido. Ter uma única API oferece a flexibilidade de usar modelos diferentes de diversos fornecedores e manter-se atualizado com as versões mais recentes do modelo com o mínimo de alterações de código.