Por que usar instâncias P3 do Amazon EC2?
As instâncias P3 do Amazon EC2 fornecem computação de alta performance na nuvem com até 8 GPUs com NVIDIA® V100 Tensor Core e taxa de transferência de rede de até 100 Gbps para machine learning e aplicativos de HPC. As instâncias possuem até 1 petaflop de desempenho de precisão mista para acelerar significativamente o machine learning e os aplicativos de computação de alta performance. As instâncias P3 do Amazon EC2 demonstraram ser capazes de reduzir o tempo de treinamento de machine learning de dias para minutos, além de aumentar o número de simulações finalizadas para computação de alta performance em 3-4x.
Com até quatro vezes a largura de banda de instâncias P3.16xlarge, as instâncias P3dn.24xlarge do Amazon EC2 são os membros mais novos da família P3, otimizadas para aplicações HPC e machine learning distribuído. Essas instâncias fornecem até 100 Gbps de taxa de transferência de redes, 96 vCPUs Intel® Xeon® escaláveis (Skylake) personalizadas, 8 GPUs NVIDIA® V100 Tensor Core com 32 GiB de memória cada e 1,8 TB de armazenamento SSD baseado em NVMe. As instâncias P3dn.24xlarge também oferecem suporte ao Elastic Fabric Adapter (EFA), que acelera as aplicações distribuídas de machine learning que usam a NVIDIA Collective Communications Library (NCCL). O EFA pode escalar milhares de GPUs, melhorando consideravelmente o rendimento e a escalabilidade dos modelos de treinamento de aprendizagem profunda e possibilitando resultados mais rápidos.
Visão geral de instâncias P3 do Amazon EC2
Benefícios
Depoimentos de clientes
Aqui estão alguns exemplos de como clientes e parceiros alcançaram suas metas de negócios com as instâncias P3 do Amazon EC2.
-
Airbnb
A Airbnb está usando o machine learning para otimizar recomendações de pesquisa e aprimorar a orientação para a definição de preço dinâmica para os anfitriões. O resultado: aumento das conversões das reservas. Com as instâncias P3 do Amazon EC2, a Airbnb pode agilizar a execução de cargas de trabalho de treinamento, executar mais iterações, criar melhores modelos de machine learning e reduzir custos.
-
Celgene
A Celgene é uma empresa de biotecnologia global que está desenvolvendo terapias direcionadas para buscar o melhor tratamento para cada paciente. A empresa executa seu volume de trabalho de HPC para o sequenciamento de genoma de próxima geração e simulações químicas nas instâncias P3 do Amazon EC2. Com este poder computacional, a Celgene pode treinar modelos de aprendizagem profunda para distinguir células malignas das benignas. Antes de começar a usar as instâncias P3, a empresa levava dois meses para executar tarefas de larga escala computacional. Agora, leva apenas quatro horas. A tecnologia da AWS permitiu à Celgene acelerar o desenvolvimento de medicamentos terapêuticos para câncer e doenças inflamatórias.
-
Hyperconnect
A Hyperconnect é especializada na aplicação de novas tecnologias baseadas em machine learning no processamento de imagens e vídeos e foi a primeira empresa a desenvolver webRTC para plataformas móveis.
-
NerdWallet
A NerdWallet é uma startup de finanças pessoais que fornece ferramentas e conselhos para facilitar aos clientes o pagamento de dívidas, a escolha dos melhores produtos e serviços financeiros e lidar com os principais objetivos da vida, como comprar uma casa ou poupar para a aposentadoria. A empresa depende muito de ciência de dados e machine learning (ML) para conectar clientes com produtos financeiros personalizados.
-
PathWise Solutions Group
Líder em soluções de sistemas de qualidade, o PathWise da Aon é um conjunto de aplicações SaaS baseado em nuvem voltado para a modelagem de gerenciamento de riscos corporativos que fornece velocidade, confiabilidade, segurança e serviços sob demanda a uma variedade de clientes.
-
Pinterest
O Pinterest usa treinamento de precisão mista em instâncias P3 na AWS para acelerar o treinamento de modelos de aprendizagem profunda. Também usa essas instâncias para acelerar a inferência desses modelos, permitindo uma experiência de descoberta rápida e exclusiva para os usuários. O Pinterest utiliza PinSage, criado usando PyTorch na AWS. Este modelo de IA agrupa imagens com base em determinados temas. Com 3 bilhões de imagens na plataforma, há 18 bilhões de associações diferentes que conectam as imagens. Essas associações ajudam o Pinterest a contextualizar temas e estilos e a produzir experiências de usuário mais personalizadas.
-
Salesforce
A Salesforce está usando o machine learning para impulsionar o Einstein Vision, permitindo que os desenvolvedores aproveitem o poder do reconhecimento de imagens para casos de uso, como pesquisa visual, detecção de marca e identificação de produto. As instâncias P3 do Amazon EC2 permitem que os desenvolvedores treinem modelos de aprendizado profundo com mais rapidez para que possam atingir rapidamente suas metas de machine learning.
-
Schrodinger
A Schrodinger usa a computação de alta performance (HPC) para desenvolver modelos preditivos a fim de ampliar a escala da descoberta e da otimização e oferecer aos clientes a capacidade de acelerar a disponibilização no mercado de medicamentos que salvam vidas. As instâncias P3 do Amazon EC2 permitem que a Schrodinger realize quatro vezes mais simulações em um dia do que com instâncias P2.
-
Subtle Medical
A Subtle Medical é uma empresa de tecnologia da área de saúde que trabalha para melhorar a eficiência das imagens médicas e a experiência do paciente com soluções inovadoras de aprendizado profundo. Sua equipe é formada por renomados cientistas de imagem, radiologistas e especialistas em AI de Stanford, MIT, MD Anderson dentre outras.
-
Western Digital
A Western Digital usa HPC para executar dezenas de milhares de simulações de ciências de materiais, fluxos de calor, magnetismo e transferência de dados para melhorar a performance e a qualidade das unidades de disco e armazenamento. Com base nos testes iniciais, as instâncias P3 permitem que as equipes de engenharia executem simulações pelo menos três vezes mais rápido do que as soluções implantadas anteriormente.