Artificial Intelligence
Category: Amazon Machine Learning
Graph-based recommendation system with Neptune ML: An illustration on social network link prediction challenges
Recommendation systems are one of the most widely adopted machine learning (ML) technologies in real-world applications, ranging from social networks to ecommerce platforms. Users of many online systems rely on recommendation systems to make new friendships, discover new music according to suggested music lists, or even make ecommerce purchase decisions based on the recommended products. […]
Industrial automation at Tyson with computer vision, AWS Panorama, and Amazon SageMaker
This is the first in a two-part blog series on how Tyson Foods, Inc., is utilizing machine learning to automate industrial processes at their meat packing plants by bringing the benefits of artificial intelligence applications at the edge. In part one, we discuss an inventory counting application for packaging lines built using Amazon SageMaker and […]
Blur faces in videos automatically with Amazon Rekognition Video
With the advent of artificial intelligence (AI) and machine learning (ML), customers and the general public have become increasingly aware of their privacy, as well as the value that it holds in today’s data-driven world. Enterprises are actively seeking out and marketing privacy-first solutions, especially in the Computer Vision (CV) domain. They need to reassure […]
Deploying ML models using SageMaker Serverless Inference
Amazon SageMaker Serverless Inference was recently announced at re:Invent 2021 as a new model hosting feature that lets customers serve model predictions without having to explicitly provision compute instances or configure scaling policies to handle traffic variations. Serverless Inference is a new deployment capability that complements SageMaker’s existing options for deployment that include: SageMaker Real-Time […]
Take advantage of advanced deployment strategies using Amazon SageMaker deployment guardrails
Deployment guardrails in Amazon SageMaker provide a new set of deployment capabilities allowing you to implement advanced deployment strategies that minimize risk when deploying new model versions on SageMaker hosting. Depending on your use case, you can use a variety of deployment strategies to release new model versions. Each of these strategies relies on a […]
Identity verification using Amazon Rekognition
In-person user identity verification is slow to scale, costly, and high friction for users. Machine learning (ML) powered facial recognition technology can enable online user identity verification. Amazon Rekognition offers pre-trained facial recognition capabilities that you can quickly add to your user onboarding and authentication workflows to verify opted-in users’ identities online. No ML expertise […]
Add AutoML functionality with Amazon SageMaker Autopilot across accounts
AutoML is a powerful capability, provided by Amazon SageMaker Autopilot, that allows non-experts to create machine learning (ML) models to invoke in their applications. The problem that we want to solve arises when, due to governance constraints, Amazon SageMaker resources can’t be deployed in the same AWS account where they are used. Examples of such […]
Plan the locations of green car charging stations with an Amazon SageMaker built-in algorithm
While the fuel economy of new gasoline or diesel-powered vehicles improves every year, green vehicles are considered even more environmentally friendly because they’re powered by alternative fuel or electricity. Hybrid electric vehicles (HEVs), battery only electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), hydrogen cars, and solar cars are all considered types of green vehicles. […]
Build MLOps workflows with Amazon SageMaker projects, GitLab, and GitLab pipelines
Machine learning operations (MLOps) are key to effectively transition from an experimentation phase to production. The practice provides you the ability to create a repeatable mechanism to build, train, deploy, and manage machine learning models. To quickly adopt MLOps, you often require capabilities that use your existing toolsets and expertise. Projects in Amazon SageMaker give […]
Run distributed hyperparameter and neural architecture tuning jobs with Syne Tune
Today we announce the general availability of Syne Tune, an open-source Python library for large-scale distributed hyperparameter and neural architecture optimization. It provides implementations of several state-of-the-art global optimizers, such as Bayesian optimization, Hyperband, and population-based training. Additionally, it supports constrained and multi-objective optimization, and allows you to bring your own global optimization algorithm. With […]









