Artificial Intelligence

Use K8sGPT and Amazon Bedrock for simplified Kubernetes cluster maintenance

This post demonstrates the best practices to run K8sGPT in AWS with Amazon Bedrock in two modes: K8sGPT CLI and K8sGPT Operator. It showcases how the solution can help SREs simplify Kubernetes cluster management through continuous monitoring and operational intelligence.

How Rocket streamlines the home buying experience with Amazon Bedrock Agents

Rocket AI Agent is more than a digital assistant. It’s a reimagined approach to client engagement, powered by agentic AI. By combining Amazon Bedrock Agents with Rocket’s proprietary data and backend systems, Rocket has created a smarter, more scalable, and more human experience available 24/7, without the wait. This post explores how Rocket brought that vision to life using Amazon Bedrock Agents, powering a new era of AI-driven support that is consistently available, deeply personalized, and built to take action.

MCP Module architecture with Host, Clients, Servers components bridging UI and Bedrock foundation models

Build an MCP application with Mistral models on AWS

This post demonstrates building an intelligent AI assistant using Mistral AI models on AWS and MCP, integrating real-time location services, time data, and contextual memory to handle complex multimodal queries. This use case, restaurant recommendations, serves as an example, but this extensible framework can be adapted for enterprise use cases by modifying MCP server configurations to connect with your specific data sources and business systems.

Diagram illustrates the solution architecture of Amazon Nova Sonic

Build real-time conversational AI experiences using Amazon Nova Sonic and LiveKit

mazon Nova Sonic is now integrated with LiveKit’s WebRTC framework, a widely used platform that enables developers to build real-time audio, video, and data communication applications. This integration makes it possible for developers to build conversational voice interfaces without needing to manage complex audio pipelines or signaling protocols. In this post, we explain how this integration works, how it addresses the historical challenges of voice-first applications, and some initial steps to start using this solution.

Unlock retail intelligence by transforming data into actionable insights using generative AI with Amazon Q Business

Amazon Q Business for Retail Intelligence is an AI-powered assistant designed to help retail businesses streamline operations, improve customer service, and enhance decision-making processes. This solution is specifically engineered to be scalable and adaptable to businesses of various sizes, helping them compete more effectively. In this post, we show how you can use Amazon Q Business for Retail Intelligence to transform your data into actionable insights.

A screenshot of the AI assistant

Democratize data for timely decisions with text-to-SQL at Parcel Perform

The business team in Parcel Perform often needs access to data to answer questions related to merchants’ parcel deliveries, such as “Did we see a spike in delivery delays last week? If so, in which transit facilities were this observed, and what was the primary cause of the issue?” Previously, the data team had to manually form the query and run it to fetch the data. With the new generative AI-powered text-to-SQL capability in Parcel Perform, the business team can self-serve their data needs by using an AI assistant interface. In this post, we discuss how Parcel Perform incorporated generative AI, data storage, and data access through AWS services to make timely decisions.

Configure fine-grained access to Amazon Bedrock models using Amazon SageMaker Unified Studio

In this post, we demonstrate how to use SageMaker Unified Studio and AWS Identity and Access Management (IAM) to establish a robust permission framework for Amazon Bedrock models. We show how administrators can precisely manage which users and teams have access to specific models within a secure, collaborative environment. We guide you through creating granular permissions to control model access, with code examples for common enterprise governance scenarios.

Solution Architecture

Improve conversational AI response times for enterprise applications with the Amazon Bedrock streaming API and AWS AppSync

This post demonstrates how integrating an Amazon Bedrock streaming API with AWS AppSync subscriptions significantly enhances AI assistant responsiveness and user satisfaction. By implementing this streaming approach, the global financial services organization reduced initial response times for complex queries by approximately 75%—from 10 seconds to just 2–3 seconds—empowering users to view responses as they’re generated rather than waiting for complete answers.