What does this AWS Solutions Implementation do?
Machine Learning for Telecommunication deploys a scalable, customizable machine learning (ML) architecture that provides a framework for end-to-end ML workloads for use in telecommunications use cases. This solution streamlines the process of ad-hoc data exploration, data processing and feature engineering, and machine learning model building including training, evaluation and performing predictions by deploying the model in an endpoint.
The solution also includes a synthetic telecom IP Data Record (IPDR) dataset to demonstrate how to use ML algorithms to test and train models for predictive analysis in telecommunication. You can use the included Jupyter notebooks as a starting point for doing your own artificial intelligence research to develop your own custom ML models, or you can customize the included notebooks for your own use case.
AWS Solutions Implementation overview
The Machine Learning for Telecommunication solution helps you implement a framework for an end-to-end ML process on the AWS Cloud using Jupyter Notebook, an open source web application for creating and sharing live code, equations, visualizations and narrative text. The diagram below presents the architecture you can build in minutes using the solution's implementation guide and accompanying AWS CloudFormation template.

Machine Learning for Telecommunication solution architecture
An Amazon Simple Storage Service (Amazon S3) bucket includes a synthetic IP Data Record (IPDR) dataset, an AWS Glue job converts the datasets, and an Amazon SageMaker instance includes Machine Learning (ML) Jupyter Notebooks.
The solution ingests data from the Amazon S3 bucket into the Amazon SageMaker cluster and runs the Jupyter notebooks on the dataset.
The notebooks preprocess the data, extract features, and divide the data into training and testing. Amazon S3 Select reads the Parquet compressed data that was processed by the AWS Glue job. ML algorithms process the training dataset to develop a model to identify anomalies and predict future anomalies.
Machine Learning for Telecommunication
Version 1.1.1
Last updated: 12/2019
Author: AWS
Estimated deployment time: 5 min
Note: To subscribe to RSS updates, you must have an RSS plug-in enabled for the browser you are using.
Features
Machine Learning for Telecommunication reference implementation
Synthetic dataset for training

Browse our library of AWS Solutions Implementations to get answers to common architectural problems.

Find AWS certified consulting and technology partners to help you get started.

Browse our portfolio of Consulting Offers to get AWS-vetted help with solution deployment.