亚马逊AWS官方博客

Category: Artificial Intelligence

在 Amazon SageMaker Ground Truth 中标记数据,以实现 3D 对象跟踪与传感器融合

在本次实验中,我们了解了Ground Truth 3D点云标记作业对于输入数据的要求与选项,同时尝试创建了对象跟踪标记作业。关于我们能够在3D点云标记作业中实现的其他任务类型,请参阅3D点云任务类型。另外,我们还要感谢KITTI团队为我们提供这套宝贵的数据集,用于演示如何准备3D点云数据并将其引入SageMaker Ground Truth。

思科使用 Amazon SageMaker 与 Kubeflow 创建混合机器学习工作流

Amazon SageMaker与Kubeflow Pipelines能够轻松被集成在统一的混合管道当中。Amazon SageMaker还提供完善的博客与教程集合,可帮助大家轻松通过Amazon SageMaker components for Kubeflow Pipelines创建起混合管道。其API亦非常丰富,涵盖了我们需要使用的所有关键组件,并允许您开发自定义算法并与Cisco Kubeflow入门包进行集成。

构建自定义 Angular 应用程序以使用 Amazon SageMaker Ground Truth 标记作业

本文展示了如何使用Angular与Ground Truth构建自定义的数据标注UI界面。该解决方案能够在标记作业创建过程中,处理各自定义模板中不同范围之间的通信活动。充分使用Angular等自定义前端框架的功能,帮助大家轻松创建现代Web应用程序,从而在公共、内部或者来自供应商的标记工作人员的配合下切实满足您的数据标注需求。

使用 Ubuntu18 DLAMI,P3dn 实例与 EFA,和 Amazon FSx for Lustre 实现大规模多 GPU 分布式深度学习训练

为深度学习训练设置机器学习基础设施往往是一项艰巨的任务,您通常需要依赖基础设施团队构建起相应环境,这将极大浪费宝贵的生产时间。此外,深度学习技术库与软件包也一直在快速变化,您需要测试各软件包之间的互操作性。使用Ubuntu 18 DLAMI,您将无需担心于基础设施设置与软件安装工作。AWS DLAMI已经为所有主流机器学习框架预先构建了必要的深度学习库与软件包,让您能够专注于模型的训练、调优与推理。