亚马逊AWS官方博客
Tag: AWS Lake Formation
PBS 通过 Amazon Personalize 为观众带来量身定制的体验
Public Broadcasting Service(PBS)希望构建一个智能推荐引擎(SRE,Smart […]
使用 AWS Lake Formation 配合 Amazon EMR 控制数据访问与权限
数据的使用在数据格式和规模两个方面已经取得了快速的发展。对不同技术(关系数据库、NoSQL、图数据库、明文文件等)进行管理则会显著增加运营开销。随着竞争烈度的提升,数据规模也将随业务推进而飞速发展,带来更大的计算与存储资源压力。这一切,都迫使组织需求通往更高敏捷性与速度水平的道路。
使用运行在 Amazon EC2 G4 实例上的 Amazon EMR,提升 RAPIDS XGBoost 性能并降低运营成本
数据的使用在数据格式和规模两个方面已经取得了快速的发展。对不同技术(关系数据库、NoSQL、图数据库、明文文件等)进行管理则会显著增加运营开销。随着竞争烈度的提升,数据规模也将随业务推进而飞速发展,带来更大的计算与存储资源压力。这一切,都迫使组织需求通往更高敏捷性与速度水平的道路。
使用 Amazon EMR、Amazon SageMaker 和 AWS Service Catalog 设置 Intuit 数据湖
我们将讨论在较高层面构建 Intuit 数据湖所包含的技术和过程,包括设置账户和资源所使用的整体结构与自动化等。请关注我们这个空间的未来动态,阅读由其他合作构建 Intuit 数据湖的团队和工程师发布的关于该系统特定方面的更详细博文。
通过 AWS Lake Formation FindMatches 转换匹配患者记录
患者匹配是实现医疗护理互通性的主要障碍之一。不匹配的患者记录和无法检索患者历史信息可能严重阻碍做出正确的临床决定,并导致漏诊或治疗延误。另外,医疗护理提供者经常会花精力去处理患者重复数据的删除,尤其当他们的数据库中的患者记录数量急速增加时。电子健康记录 (EHR) 近年来大幅优化了患者的安全和护理协调,但准确的患者匹配对很多医疗护理组织来说仍然是一项挑战。
利用 AWS Lake Formation 探索元数据:第 1 部分
数据湖是一种用于创建单个存储库以存储和分析结构化和非结构化数据的日益流行的方法。AWS Lake Formation 使您可以轻松设置、保护和管理数据湖。本博文将引导您使用 Lake Formation 来创建和探索数据湖
利用 AWS Lake Formation 探索元数据:第 2 部分
在本博文系列的第 1 部分中,您学习了如何使用 Lake Formation 来创建和探索数据湖。本博文将引导您使用控制台中的 Lake Formation 的元数据搜索功能来发现数据,并了解受列权限限制的元数据搜索结果
使用 AWS Lake Formation 构建、保护和管理数据湖
传统上,组织将数据保存在固化、单一用途的系统中,例如本地数据仓库设备。同样,他们使用单一方法来分析数据,例如预定义的 BI 报告。在数据库之间移动数据以使用不同方法(例如机器学习 (ML) 或即兴使用的 SQL 查询)来分析数据时,需要在分析之前进行“提取、转换、加载” (ETL) 处理。这些传统方法即便再好,也是效率低下且存在延迟的。最糟糕的是存在复杂的安全性。