AWS 기술 블로그
Category: Amazon SageMaker JumpStart
AWS CDK를 활용한 OpenAI Whisper 모델 Amazon SageMaker Endpoint 배포 자동화
OpenAI Whisper 모델은 MIT 라이선스를 가진 자동 음성 인식(Automatic Speech Recognition, ASR) 및 음성 번역을 위한 사전 훈련 모델입니다. OpenAI Whisper 모델은 CNN과 Transformer 아키텍처를 결합한 모델로, 68만 시간의 라벨링된 데이터로 훈련되었으며, 작은 크기에도 불구하고 높은 정확도를 보입니다. 특히 파인튜닝(fine-tuning) 없이도 다양한 데이터셋과 도메인에 잘 일반화되는 것이 큰 장점입니다. 또한 전사(transcribe), 번역, 언어 식별, 발화자 […]
KT, Amazon SageMaker를 이용한 ViT 기반 Food Tag 모델의 학습 시간 단축 여정
KT의 ‘AI Food Tag’는 사진 속 음식의 종류와 영양 성분을 알려 주는 인공지능(AI) 기반 식이 관리 솔루션입니다. KT가 개발한 Vision 모델은 레이블(Label)이 없는 대용량 이미지 데이터로 학습한 사전 학습 모델이 적용되어, 다양한 음식들의 영양 성분과 칼로리 정보를 분석하여 당뇨 등 만성질환 환자의 식단 관리에 도움을 줄 수 있습니다. 이러한 ‘AI Food Tag’ 모델의 학습 성능 […]
VARCO LLM과 Amazon OpenSearch를 이용하여 한국어 Chatbot 만들기
VARCO LLM은 엔씨소프트(NC SOFT)에서 제공하는 대용량 언어 모델(LLM)입니다. VARCO LLM KO-13B-IST는 VARCO LLM KO-13B-FM의 파인 튜닝(Fine Tuning) 모델로서 Question and Answering, Summarization등 다양한 태스크에 활용할 수 있으며, Amazon SageMaker를 이용하여 쉽게 배포하여 사용할 수 있습니다. 또한, 대규모 언어 모델(LLM)은 사전학습(Pre-train)을 통해 많은 경우에 좋은 답변을 할 수 있지만, 학습에 포함되지 않은 특정 영역(domain specific)에 대한 질문에 […]
Amazon SageMaker JumpStart와 Vector Store를 이용하여 Llama 2로 Chatbot 만들기
Llama 2의 대규모 언어 모델(Large Language Models)을 이용하여 질문/답변(Question/Answering)을 수행하는 chatbot을 vector store를 이용하여 구현합니다. 대량의 데이터로 사전학습(pretrained)한 대규모 언어 모델(LLM)은 학습되지 않은 질문에 대해서도 가장 가까운 답변을 맥락(context)에 맞게 찾아 답변할 수 있습니다. 이는 기존의 Rule 방식보다 훨씬 정답에 가까운 답변을 제공하지만, 때로는 매우 그럴듯한 잘못된 답변(hallucination)을 할 수 있습니다. 이런 경우에 파인 튜닝(fine tuning)을 통해 […]
Amazon SageMaker JumpStart를 이용하여 Falcon Foundation Model기반의 Chatbot 만들기
2023년 6월부터 AWS 서울 리전에서 EC2 G5인스턴스를 사용할 수 있게 되었습니다. 여기서는 Falcon Foundation Model을 Amazon SageMaker JumpStart를 이용해 AWS 서울 리전의 EC2 G5에 설치하고, 웹 브라우저 기반의 Chatbot을 생성하는 방법에 대해 설명합니다. Falcon FM은 HuggingFace의 Open LLM Leaderboard에서 상위권(2023년 7월 기준)에 위치할 만큼 우수한 성능을 가지고 있으면서도, 아파치 2.0 라이선스 정책에 따라 상용을 포함하여 누구나 자유롭게 사용할 […]
QLoRA 기법으로 Falcon-40B 및 기타 대규모 모델(LLM)을 Amazon SageMaker Studio 노트북의 대화형 환경에서 파인튜닝하기
이 글은 AWS Machine Learning Blog에 게시된 Interactively fine-tune Falcon-40B and other LLMs on Amazon SageMaker Studio notebooks using QLoRA by Sean Morgan, Philipp Schmid, and Lauren Mullennex를 한국어로 번역 및 편집하였습니다. 대규모 언어 모델(LLM; Large Language Models)을 파인튜닝(Fine-tuning) 하면 오픈 소스 파운데이션 모델(Foundation model)을 개선하여 도메인별 작업에서 더욱 향상된 성능을 끌어낼 수 있습니다. 이 […]
Amazon SageMaker, Amazon OpenSearch Service, Streamlit, LangChain을 사용하여 강력한 질문/답변 봇 구축하기
이번 게시글은 영문 게시글(Build a powerful question answering bot with Amazon SageMaker, Amazon OpenSearch Service, Streamlit, and LangChain by by Amit Arora, Navneet Tuteja, and Xin Huang)의 한글 번역글입니다. 엔터프라이즈 환경에서 생성 AI와 대규모 언어 모델(LLM; Large Language Models)의 가장 일반적인 유스케이스 중 하나는 기업의 지식 코퍼스를 기반으로 질문에 답변하는 것입니다. Amazon Lex는 AI 기반 […]
Amazon SageMaker JumpStart를 사용하여 텍스트-이미지로 변환하는 Stable Diffusion 모델을 파인 튜닝 하기
이번 게시글은 영문 게시글(Fine-tune text-to-image Stable Diffusion models with Amazon SageMaker JumpStart by Vivek Madan, Heiko Hotz, and Xingchen Ma)의 한글 번역글입니다. 2023년 3월: 이 블로그는 텍스트–이미지 Stable Diffusion 모델을 파인 튜닝하기 위한 AMT HPO 지원을 검토 및 업데이트했습니다. 2022년 11월에 우리는 AWS 고객이 Amazon SageMaker JumpStart에서 Stable Diffusion 모델을 사용하여 텍스트에서 이미지를 생성할 수 […]
Stable Diffusion을 Amazon SageMaker JumpStart로 편리하게 이용하기
Stable Diffusion 모델을 이용하면 텍스트를 이용하여 창조적인 이미지를 생성할 수 있습니다. AWS에서는 Amazon SageMaker JumpStart을 이용하여 기계 학습(ML)을 쉽게 사용할 수 있도록 사전 학습(pre-trained)된 모델을 제공하고 있는데, 2022년 10월 부터 Stable Diffusion 모델을 추가적으로 제공하고 있습니다. 이를 통해 Stable Diffusion 이미지를 쉽게 생성할 수 있으며, 즉시 Serving할 수 있도록 SageMaker Endpoint도 제공합니다. SageMaker Endpoint는 트래픽이 증가할 […]