Artificial Intelligence
Category: Analytics
Build a system for catching adverse events in real-time using Amazon SageMaker and Amazon QuickSight
Social media platforms provide a channel of communication for consumers to talk about various products, including the medications they take. For pharmaceutical companies, monitoring and effectively tracking product performance provides customer feedback about the product, which is vital to maintaining and improving patient safety. However, when an unexpected medical occurrence resulting from a pharmaceutical product […]
Translate, redact, and analyze text using SQL functions with Amazon Redshift, Amazon Translate, and Amazon Comprehend
You may have tables in your Amazon Redshift data warehouse or in your Amazon Simple Storage Service (Amazon S3) data lake full of records containing customer case notes, product reviews, and social media messages, in many languages. Your task is to identify the products that people are talking about, determine if they’re expressing happy thoughts […]
Use the AWS Cloud for observational life sciences studies
In this post, we discuss how to use the AWS Cloud and its services to accelerate observational studies for life sciences customers. We provide a reference architecture for architects, business owners, and technology decision-makers in the life sciences industry to automate the processes in clinical studies. Observational studies lead the way in research, allowing you […]
How Intel Olympic Technology Group built a smart coaching SaaS application by deploying pose estimation models – Part 1
February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. The Intel Olympic Technology Group (OTG), a division within Intel focused on bringing cutting-edge technology to Olympic athletes, collaborated with AWS Machine Learning Professional Services (MLPS) to build a smart coaching software […]
Extend Amazon SageMaker Pipelines to include custom steps using callback steps
Launched at AWS re:Invent 2020, Amazon SageMaker Pipelines is the first purpose-built, easy-to-use continuous integration and continuous delivery (CI/CD) service for machine learning (ML). With Pipelines, you can create, automate, and manage end-to-end ML workflows at scale. You can extend your pipelines to include steps for tasks performed outside of Amazon SageMaker by taking advantage […]
Simplify and automate anomaly detection in streaming data with Amazon Lookout for Metrics
Do you want to monitor your business metrics and detect anomalies in your existing streaming data pipelines? Amazon Lookout for Metrics is a service that uses machine learning (ML) to detect anomalies in your time series data. The service goes beyond simple anomaly detection. It allows developers to set up autonomous monitoring for important metrics […]
Smart city traffic anomaly detection using Amazon Lookout for Metrics and Amazon Kinesis Data Analytics Studio
August 30, 2023: Amazon Kinesis Data Analytics has been renamed to Amazon Managed Service for Apache Flink. Read the announcement in the AWS News Blog and learn more. Cities across the world are transforming their public services infrastructure with the mission of enhancing the quality of life of its residents. Roads and traffic management systems […]
Use contextual information and third party data to improve your recommendations
Have you noticed that your shopping preferences are influenced by the weather? For example, on hot days would you rather drink a lemonade vs. a hot coffee? Customers from consumer-packaged goods (CPG) and retail industries wanted to better understand how weather conditions like temperature and rain can be used to provide better purchase suggestions to […]
Build XGBoost models with Amazon Redshift ML
Amazon Redshift ML allows data analysts, developers, and data scientists to train machine learning (ML) models using SQL. In previous posts, we demonstrated how customers can use the automatic model training capability of Amazon Redshift to train their classification and regression models. Redshift ML provides several capabilities for data scientists. It allows you to create […]
Build multi-class classification models with Amazon Redshift ML
July 2024: This post was reviewed and updated for accuracy. Amazon Redshift ML simplifies the use of machine learning (ML) by using simple SQL statements to create and train ML models from data in Amazon Redshift. You can use Amazon Redshift ML to solve binary classification, multi-class classification, and regression problems and can use either AutoML or […]







