亚马逊AWS官方博客
Category: Amazon Machine Learning
使用 Amazon Comprehend 构建自定义分类器
Amazon Comprehend 是一项使用机器学习 (ML) 在文本中发现见解和关系的自然语言处理 (NLP) 服务。Amazon Comprehend 可识别文本的语言;提取关键短语、地点、人物、品牌或事件;以及理解文本的正面或负面程度。有关 Amazon Comprehend 所有功能的更多信息,请参阅 Amazon Comprehend 功能。
使用适用于 Amazon SageMaker 的 AWS Step Functions Data Science SDK 自动执行模型重新训练和部署
随着机器学习 (ML) 在公司核心业务中占据的份量越来越重,缩短从模型创建到部署的时间就变得越来越重要。2019 年 11 月,AWS 发布了适用于 Amazon SageMaker 的 AWS Step Functions Data Science SDK,开发人员可以通过这款开源开发工具包用 Python 创建基于 Step Functions 的机器学习工作流。现在,您可以使用与模型开发所用的同款工具创建可重复使用的模型部署工作流。您可以在 GitHub仓库的 “automate_model_retraining_workflow” 文件夹中找到此解决方案的完整手册。
Amazon Forecast 现在支持按您选择的分位数生成预测
Forecast 在 re:Invent 2018 大会上推出并从 2019 年 8 月起全面开放,是一项完全托管的服务,使用机器学习生成高度准确的预测,用户无需事先具备任何机器学习经验。Forecast 适用于十分广泛的用例,包括估算产品需求、供应链优化、能源需求预测、财务规划、劳动力规划、云基础设施使用量的计算以及流量需求预测等。
使用 Amazon SageMaker 降低机器学习的总体拥有成本并提高工作效率
总体拥有成本 (TCO) 通常是您会用于估计与比较 ML 成本的财务指标。本文针对Amazon SageMaker (这是一个用来构建、训练与部署 ML 模型的全托管服务)做了TCO分析,结果表明,它的 TCO 在三年时间里比其他方式如自己通过 Amazon EC2 或 Amazon EKS来建设要低 54%。我们的分析范围涵盖了从只有五位数据科学家的小团队到由 250 位数据科学家组成的超大型团队,结论是 Amazon SageMaker 能为各种规模大小不同的团队都提供更出色的 TCO。
玩转GPU实例 – 我的Linux 工具箱
本文主要讨论如何使用脚本创建GPU指令集。
使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析
在医学报告整理和内容提取的场景中,从业人员往往需要花费大量的时间进行内容阅读和关键字的提炼;Amazon Textract 结合 Amazon Comprehend Medical 的解决方案整体采用无服务器化架构,全自动化也提高整体效率。采用该解决方案,可以以秒级的效率提取出需要的内容;除此之外,该架构也大大降低了整体成本,架构中包含的所有服务都以实际使用计费。
Amazon Textract 是一个托管的 OCR(Optical Character Recognition) 服务,Amazon Comprehend Medical 是一个医疗语义分析的托管人工智能服务。通过 Amazon Textract 将医学报告和诊断报告的表单表格转化成序列化文档,通过 Amazon Comprehend Medical 对这些序列化文档进行分析并快速获取不同分类的信息。在 CRO(Clinical Research Organization) 等行业场景中,可以通过这个解决方案对医学研究、药物分析及诊断报告提供有效的帮助和补充。
平民数据科学在企业的落地实践(一)
本文主要介绍来自AWS APN合作伙伴KNIME的数据科学和机器学习平台,这是一个平民化的机器学习平台,可以帮助企业低门槛的快速落地机器学习的能力。KINME的平台和AWS的数据服务有很好的结合,无论是数据源还是数据处理。同时KNIME在Gartner 2019数据科学和机器学习平台的魔力象限中处于领导者地位,技术领先行业。
本文作为系列文章的第一篇,用Kaggle上的泰坦尼克号幸存预测案例向读者介绍KNIME平台的使用。
使用 Amazon Transcribe 为视频增加中文字幕
Amazon Transcribe 是一项自动语音识别 (ASR) 服务,使开发人员能够轻松地为其应用程序添加语音转文本功能。自从在 re:Invent 2017 发布以来,越来越多的用户将语音识别功能添加到其应用程序和设备中。
Transcribe计划于2019年9月在中国的北京区域(BJS)和宁夏区域(ZHY)支持该项服务。在本文中,作者分享一个使用Amazon Transcribe为视频自动增加字幕的示例。
利用 Amazon Elastic Inference 设置工具在几分钟内快速加载 EI 加速器
Elastic Inference使得您可以将低成本的以GPU为动力的计算加速附加到 Amazon EC2 和 Amazon SageMaker 实例,从而将运行深度学习推理的成本降低多达 75%。如果您是第一次使用 EI,必须设置若干依赖项:Amazon Web Services (AWS) PrivateLink VPC 终端节点、IAM 策略和安全组规则。您可以使用 EI 设置工具来加速这一过程,它能够在几分钟内创建所需的资源帮助您启动 EI 加速器,使您快速上手。本文阐述了如何使用脚本、脚本的功能以及运行脚本时的情况。
使用AWS Sagemaker部署的终端节点进行推荐预测的常用场景
上次我们初步介绍了使用 SageMaker 快速训练和部署 Factorization Machines 模型,接下来我们利用Endpoint进行预测模拟的实际用例。