Category: AWS Deep Learning AMIs*


AWS Deep Learning Conda AMI 和 Base AMI 入门

今天,AWS 宣布发布两个新版本的 AWS Deep Learning AMI:基于 Conda 的 AMI 和 Base AMI。本文介绍有关如何充分利用新 AMI 的说明和其他资源。

带 Conda 托管环境的新 Deep Learning AMI

这些面向 Amazon LinuxUbuntu 的新 Deep Learning AMI 预安装了 Python 环境,用于使用 Conda 这个热门开源软件包和环境管理工具创建的深度学习。Conda 托管 Python 环境针对常见深度学习框架 (包括 Apache MXNet、TensorFlow、Caffe2、PyTorch、Keras、CNTK 和 Theano) 进行了预先配置。此外,每个 Python 环境都有两个版本 – Python 2 和 Python 3。使用 AWS 管理控制台登录 AWS EC2 实例之后,系统会提供一条控制台消息,列出所有 Conda 环境。

您也可以运行以下命令获取此列表:

conda env list

接下来,为所选深度学习框架 (如 MXNet) 激活 Python 环境,运行以下命令:

对于 Python 2

source activate mxnet_p27

对于 Python 3

source activate mxnet_p36

处于 Python 环境之后,可以运行以下命令查看已安装软件包的列表:

conda list

(more…)

面向机器学习从业人员的新 AWS Deep Learning AMI

我们非常高兴宣布推出两个新版本的 AWS Deep Learning AMI:一个是基于 Conda 的 AMI,它具有单独的 Python 环境,面向通过 Conda 这个热门开源软件包和环境管理工具创建的深度学习框架;另一个是 Base AMI,它带有 GPU 驱动程序和库,可用来部署您自己的自定义深度学习模型。

在学术界和业界,从框架和算法到新的方法和理论,深度学习技术正在快速发展。对于需要快速安全测试算法、针对特定版本框架进行优化、运行测试和设置基准或从头开始合作项目的开发人员而言,这一切显得非常复杂。虚拟环境可为这些工作提供自由和灵活性,这就是我们现在向 AWS Deep Learning AMI 加入虚拟技术的原因。我们还准备了全新的开发人员资源,以帮助您详细了解这些 AMI,帮助您为项目选择合适的 AMI以及深入学习实践教程

基于 Conda 的新 Deep Learning AMI

基于 Conda 的 AMI 预安装了 Python 环境,适合使用 Conda 创建的深度学习。每个基于 Conda 的 Python 环境都配置为包括常见深度学习框架及其依赖项。将它视为一个完全备份的虚拟环境,随时可以运行您的深度学习代码,例如,用来训练神经网络模型。我们的分步指南提供了有关如何为所选深度学习框架激活环境或使用简单的单行命令在不同环境之间进行切换的说明。

该 AMI 的优势不止于此。该 AMI 上的环境以相互隔离、独立的沙盒形式运行。这意味着,当您在沙盒内运行自己的深度学习代码时,可以全面了解和控制其运行时环境。您可以安装新软件包、升级现有软件包或更改环境变量,完全不用担心影响 AMI 上的其他深度学习环境。  这种级别的执行环境灵活性和精细控制还意味着您现在可以对深度学习模型运行一致和随着时间推移可再现的测试以及设置性能基准。

最后,该 AMI 提供直接集成 Jupyter Notebook 的可视化界面,因此可以切入和切出环境、在所选环境中启动 Notebook,甚至是重新配置环境,这一切操作都只需从 Jupyter Notebook 浏览器中单击一下鼠标。我们的分步指南介绍这些集成以及其他 Jupyter Notebook 和教程。

(more…)