亚马逊AWS官方博客

Category: Amazon SageMaker

机器学习的三月也疯狂!

在美国,三月中旬是上亿人观看、投注大学篮球联赛的季节。NCAA 大学篮球联赛鑫战正酣,Randall想借此机会简单介绍一下 Wesley Pasfield 的工作,他是我们的专业服务机器学习专家之一。Wesley 可以从 kenpom.com 和 College Basketball Reference 提取数据以创建模型,使用 Amazon SageMaker 嵌入的 XGBoost 算法来预测疯狂三月的结果。

如何宅在家里构建一个分图利器? – 利用 Amazon SageMaker 快速构建一个基于深度学习端到端的图像分类器

基于深度学习 (Deep Learning) 的图像分类的研究与应用已经进行的如火如荼,对大部分的业务场景来说,更是有着深刻的现实意义 – 基于图片的互联网分享社交应用,如何借助 Deep Learning 在第一时间对用户分享的图片进行实时监测,分类是一个比较典型的应用场景;又例如,电商运营可能希望对所有的产品照片按照产品属性进行自动化分类,减少人工分类的工作;另外,在工业生产线的良品率基于产品图片的自动筛检,以及辅助医疗领域对病理图片的分类等等场景都有着十分广泛的应用前景和实用价值。

当然,利用神经网络 (Neural Networks)构建的深度学习,因为其非线性的特性以及堆叠网络架构使其具备了数以百万计的模型参数在图片分类利用越来越成熟。但是,对于不具备深度学习研发能力的用户,从零构建这样的应用无疑是一种挑战。Amazon SageMaker 是一个完全托管的机器学习服务,它使一般的开发人员和数据科学家可以快速轻松地构建以任何规模的机器学习训练任务,并且提供基于API的端到端的模型部署方案以及 10 多类 Amazon 自带的典型算法,让用户无障碍地轻松构建各种典型的机器学习应用。

好了,我们今天给大家准备了一个有趣的任务 – 构建一个猫狗图片的分类器。

让神经网络触手可及 – AWS 风格

Amazon AI 的目标是通过开发 Amazon SageMaker 之类的平台来让机器学习变得大众化,而 fast.ai 的目标正好与其相同:提供平等教育机会,以便每个人都可以掌握机器学习并提高工作效率。fast.ai 的宣传语是“让神经网络触手可及。”这不是一场降低深度神经网络热门度的比赛,而是要让其吸引力和可访问性不仅仅局限于主导该领域研究的学术精英。

随着深度学习用例 (例如,计算机视觉、自然语言处理和机器翻译) 的激增,我们还发现,开发人员社区对了解机器学习及其在众多问题上的应用产生了浓厚的兴趣。在实际应用方面,“深度学习纳米学位”开发公司 Udacity 在全球的用户数量已超过 800 万。其中,5 万多名用户志在获得纳米学位,获得这些学位的很大一部分用户专注于深度学习。我们开始注意到,机器学习掀起热潮,但这方面的教育仍旧沿袭一般教育方式,从研究开始,然后才是应用。进入 fast.ai 世界,感受大规模开放在线课程 (MOOC) 无与伦比的魅力,与 10 万余名学生共同利用 AWS 云的全球网络办公环境在线学习深度学习。

Amazon SageMaker 现在推出了 AWS CloudTrail 集成

AWS 客户请求提供一种方法用来在 Amazon SageMaker 中记录活动,从而帮助满足管治及合规性要求。我很高兴地宣布,Amazon SageMaker 现在与 AWS CloudTrail 进行了集成,这项服务可用来记录、持续监控以及保留与 Amazon SageMaker API 活动相关的账户信息。无论是通过 Amazon SageMaker SDK、AWS SDK、Apache Spark SDK for Amazon SageMaker,还是通过 Amazon SageMaker 控制台进行的 Amazon SageMaker API 调用,都可以被捕获并发送到 Amazon S3 存储桶,从而提供 AWS 账户活动的事件历史记录。记录的信息包括源 IP 地址、发出请求的日期和时间、与请求关联的用户身份以及请求的参数。

Amazon SageMaker BlazingText:在多个 CPU 或 GPU 上并行处理 Word2Vec

今天,我们推出了 Amazon SageMaker 的最新内置算法 Amazon SageMaker BlazingText。BlazingText 是一种无监督学习算法,用于生成 Word2Vec 嵌入,即单词在大型语料库中的密集向量表示。我们很高兴构建了 BlazingText,它可以最快的速度实现 Word2Vec,供 Amazon SageMaker 用户在以下实例上使用:

单一 CPU 实例 (Mikolov 和 fastText 的原始 C 实现)
使用多个 GPU、P2 或 P3 的单一实例
多个 CPU 实例 (分布式 CPU 训练)