亚马逊AWS官方博客

使用 AWS Glue、Apache Hudi 和 Amazon S3 构建无服务器管道以分析串流数据

企业通常会积累海量数据,并继续生成越来越多的数据量,从 TB 级到 PB 级,有时甚至会生成 EB 级的数据。此类数据通常在不同的系统中生成,需要聚合到一个位置进行分析和生成洞察。借助数据湖架构,您可以聚合各个孤岛中的数据,将其存储在一个集中式存储库中,实施数据治理,并支持基于这些存储的数据进行分析和机器学习(ML)。

构建、共享、部署:业务分析师和数据科学家如何使用无代码机器学习和 Amazon SageMaker Canvas 缩短面市时间

机器学习(ML)可以优化多个垂直行业的核心业务功能(例如需求预测、信用评分、定价、预测客户流失、确定下一次最佳商品推荐、预测延迟发货及提高生产质量),从而帮助企业增加收入、推动业务增长并降低成本。传统机器学习开发周期需要几个月的时间,且需要稀缺的数据科学和机器学习工程技能。分析师对机器学习模型的想法往往会积压很长时间,因为需要等待数据科学团队有空来实现,而数据科学家的精力却往往放在需要其全部技能的更复杂的机器学习项目上。