亚马逊AWS官方博客

Tag: AI

Apple Core ML 和 Keras 支持现适用于 Apache MXNet

我们对于 Apache MXNet 版本 0.11 的可用性感到很兴奋。利用此版本,MXNet 在社区发展以及酝酿 Apache 项目方面都达到了重要里程碑。参与者 – 包括来自 Apple、Samsung 和 Microsoft 的开发人员 – 向此版本提交了代码。到目前为止,该项目已有 400 多名参与者。该项目现已将其代码库完全迁移至 Apache,并且已使其首个正式版本成为孵化项目。我们在上一篇博客中讨论了此版本的一些重要功能。本博客文章将简要回顾这些重点内容。 使用 MXNet 模型将机器学习构建到适用于 iOS、macOS、watchOS 和 tvOS 的应用程序中 利用 Apple 在 WWDC 2017 上发布的 Core ML 版本,开发人员现在可以轻松地将机器学习模型集成到其应用程序中,这使得他们只需编写几行代码即可为用户带来智能的新功能。我们已开始了解这些功能 (如增强实境) 将如何改变我们体验周围环境的方式。随着快速发展的 AI 空间中的功能的扩展,开发人员将有权访问新的机器学习模型,这些模型能够开启用于增强体验的新功能。 Apple 已将代码提交至 Apache MXNet 项目,以方便应用程序开发人员使用一流的模型。MXNet 现在与 Core ML 结合在一起,使开发人员能够利用 MXNet 在云中构建和训练机器学习模型,然后将这些模型导入 Xcode 中,以便您能够在应用程序中轻松构建智能的新功能。您可以从适用于各种应用程序的预训练模型的 MXNet Model Zoo 中选择,也可以构建您自己的模型。此版本为您提供一种用于将 MXNet […]

Read More

使用 Apache MXNet 对基于 CNN 的检测器的训练时间进行基准测试

作者:Iris Fu 和 Cambron Carter 这是一篇由工程总监 Cambron Carter 和 GumGum 的计算机视觉科学家 Iris Fu 联合发布的访客文章。用他们自己的话说,“GumGum 是一家在计算机视觉领域具有深厚专业知识的人工智能公司,能帮助客户充分发挥网络、社交媒体及广播电视每天生产的图像和视频的价值。” 目标物检测的最新技术  检测是许多经典计算机视觉问题之一,已随着卷积神经网络 (CNN) 的采用而得到显著改善。随着 CNN 越来越多地用于图像分类,许多人都依靠粗糙和昂贵的预处理程序来生成候选区域 (region proposal)。通过诸如“选择性搜索”之类的算法根据区域的“客体性”(它们包含目标物的可能性) 生成候选区域,这些区域随后被馈送到训练用于分类的 CNN。虽然这种方法能得到准确结果,但需要很高的运行成本。Faster R-CNN,You Only Look Once (YOLO) 和 Single Shot MultiBox Detector (SSD) 等 CNN 架构通过将定位任务嵌入到网络中来折中解决该问题。 除了预测等级和置信度,这些 CNN 还尝试预测包含某些目标物的区域极值。在本文中,这些极值只是矩形的四个角点,通常称为边界框。先前提到的检测架构需要已经用边界框注释的训练数据,即,该图像包含一个人,而且此人在该矩形区域内。以下是分类训练数据和检测训练数据: 超级帅气又非常能干的工程师 我们开始对使用 Apache MXNet 和 Caffe 来训练 SSD 的体验进行比较。明显动机是以分布式方式训练这些新架构,而不降低准确性。有关架构的更多信息,请参阅“SSD: Single Shot MultiBox Detector”。 训练工具  对于这组实验,我们尝试了几款 […]

Read More

通过机器学习自动优化 DBMS

本客座文章由卡内基梅隆大学的 Dana Van Aken、Geoff Gordon 和 Andy Pavlo 发布。本项目演示学术研究人员如何利用我们的 AWS Cloud Credits for Research Program 实现科学突破。点击:原文链接 数据库管理系统 (DBMS) 是所有数据密集型应用程序最重要的组成部分。它们可以处理大量数据和复杂工作负载。但它们拥有成百上千的配置“开关”,控制了诸如用于缓存的内存量以及将数据写入存储的频率等诸多因素,因此管理起来很困难。组织通常会聘请专家来帮助完成优化活动,但对许多组织来说专家的费用过于高昂。 卡内基梅隆大学数据库研究组的学生和研究人员开发了一款新工具 OtterTune,它可以针对 DBMS 配置开关自动查找较佳的设置。其目标是让每个人都可以轻松部署 DBMS,即使是毫无数据库管理专业知识的人。 与其他 DBMS 配置工具不同,OtterTune 利用在优化之前的 DBMS 部署期间获得的知识来优化新的部署。这可以显著缩短优化新 DBMS 部署所需的时间以及减少所需的资源。为此,OtterTune 维护了一个存储库,用于存储在之前的优化会话中收集的优化数据。它利用此类数据来构建机器学习 (ML) 模型,以捕获 DBMS 对不同配置的响应方式。OtterTune 使用这些模型来指导新应用程序的试验,进而推荐可改善最终目标 (例如,减少延迟或提高吞吐量) 的设置。 在本文中,我们将讨论 OtterTune ML 管道中的每一个组件,并演示这些组件如何彼此交互以优化 DBMS 配置。然后,我们将通过比较 OtterTune 推荐的最佳配置与数据库管理员 (DBA) 及其他自动优化工具选择的配置的性能,评估 OtterTune 对 MySQL 和 Postgres […]

Read More