亚马逊AWS官方博客

Tag: Amazon EMR

Amazon EMR 对 Spark 集群提升弹性并增强恢复能力的实现

借助 Amazon EMR 中的自动扩展功能,客户可以根据集群使用情况或其他与作业相关的指标来动态扩缩集群。虽然这些功能可帮助您有效利用资源,但也可能会导致 EC2 实例在作业运行过程中关闭。这可能会导致计算和数据丢失,从而影响作业的稳定性或者因重新计算产生重复工作。

通过 EMR Notebooks 在运行的集群上安装 Python 库

本博文将讨论如何通过 EMR Notebook 直接在正在运行的集群上安装笔记本范围的Python库。在此功能推出之前,您必须依赖Bootstrap引导操作或使用自定义 AMI 来安装预置 EMR AMI 没有预先打包的其他库。接下来,博文还将讨论如何使用 EMR Notebooks 中本地可用的预安装 Python 库来分析结果并绘制图表。此功能在您无法访问 PyPI 存储库但需要分析和可视化数据集的情况下非常有用。

EMR Notebooks: 基于 Jupyter Notebook 的托管分析环境

EMR Notebooks 旨在帮助您轻松使用 Apache Spark 试验和构建应用程序。在本博文中,我将先介绍 EMR Notebooks 具备的一些优势。然后,我将介绍它的一些功能,例如将笔记本分离并附加到不同的 EMR 集群、从笔记本内部监控 Spark 活动、使用标签控制用户权限,以及设置用户模拟来跟踪笔记本用户及其操作。要了解如何创建和使用 EMR Notebooks,您可以访问使用 Amazon EMR Notebooks 或观看 AWS 在线技术讲座网络研讨会。

使用经 EMRFS S3 优化的提交器提高 Apache Spark 写入 Apache Parquet 格式文件的性能

经 EMRFS S3 优化的提交程序是一款新的输出提交程序,可用于 Amazon EMR 5.19.0 及更高版本的 Apache Spark 作业。此提交程序使用 EMR File System (EMRFS) 可提高将 Apache Parquet 文件写入 Amazon S3 时的性能。在本文中,我们将运行性能基准测试,将此经优化的新提交程序算法与现有提交程序算法(即 FileOutputCommitter 算法版本 1 和 2)进行比较。最后,我们会讨论新提交程序的当前限制,并在可能的情况下提供解决方法。

在 Amazon EMR 上使用 S3DistCp 在 HDFS 和 Amazon S3 之间高效迁移数据的七个技巧

对于 Amazon EMR 客户来说,尽管在 Amazon S3 中直接处理数据早已稀松平常,但有时您可能需要将数据从 S3 复制到 Amazon EMR 集群上的 Hadoop 分布式文件系统 (HDFS) 中。此外,您的某个使用案例还可能需要在存储桶或区域之间迁移大量数据。在这类使用案例中,简单的复制操作对大型数据集来说显然不适用。Amazon EMR 可以提供这方面的帮助。它提供了一个实用程序 S3distCp,用以帮助将数据从 S3 迁移到其他 S3 位置或集群上的 HDFS。

使用高级 Amazon CloudWatch 指标和 AWS Lambda 通过空闲检查和自动资源终止优化 Amazon EMR 成本

在这篇博文中,我们将提出一种解决方案来减少这方面的成本。我们实施了一个 bash 脚本,将其安装在 EMR 集群的主节点上,并将该脚本计划为每 5 分钟运行一次。该脚本可监控集群并每 5 分钟向 CloudWatch 发送一次自定义指标 EMR-INUSE(0=非活动;1=活动)。如果 CloudWatch 在一些预定义数据点收到 0(非活动),则将触发警报,然后执行终止集群的 AWS Lambda 函数。

Amazon EMR 5.24 中的 Apache Spark 性能升级 — 性能比 Amazon EMR 5.16 最高提升 13 倍 | AWS 大数据博客

Amazon EMR 发行版 5.24.0 包含了多项 Spark 优化,提升了查询性能。为了评估性能的提升,我们使用了 3TB 级的 TPC-DS 基准查询,在一个 6 节点 c4.8xlarge EMR 集群上运行,数据存储在 Amazon S3 中。我们观察到,在以类似的配置运行时,EMR 5.24 上的查询性能要比 EMR 5.16 高 13 倍。