亚马逊AWS官方博客

Tag: machine learning

使用AWS Sagemaker训练因子分解机模型并应用于推荐系统

本博客中的实验采用国内用户对大量国内外电影的评论作为训练数据集,利用AWS SageMaker自带的因子分解机算法构建模型,通过SageMaker的超参调优服务观察参数调整对模型表现的影响。最后,以实际应用中经常会遇到的用法演示模型的预测结果。本次实验全部使用Python3.6完成,在SageMaker中选用conda_python3的Kernel。

使用 Amazon SageMaker 通过自定义数据集训练模型

对于刚上手机器学习的从业人员而言,业务需求所需要呈现的结果,往往不仅是用公开数据集就能够训练出合适的模型。我们往往只有少量的业务相关数据,甚至这些数据也需要从零开始收集整合,而这之后还需要进行数据清洗、数据打标签、特定数据格式转化等复杂的制作特定数据集的步骤,这些工作会阻塞住我们前进的脚步。除了容易在数据集上举步不前外,对于所需要数据量的误解也是另外一大阻碍因素。我们总认为进行机器学习需要“大量”的数据,究竟需要多少数据?在仅有少量数据时就不能训练出准确率较高的模型?本文试图从零开始,从制作自己的数据集开始,来探讨上面提出的问题。