Amazon Web Services ブログ

Category: Database

東京リージョンで Amazon Aurora with PostgreSQL Compatibility をご利用可能に

Amazon Aurora PostgreSQL-compatible edition が、アジアパシフィック (東京) でも利用可能となりました。これにより、データベースの構築、可用性、スケーラビリティを確保するための選択肢が広がります。 Amazon Aurora は、ハイエンドな商用データベースのパフォーマンスと可用性、オープンソースデータベースのシンプルさとコスト効率性を兼ね備えています。Amazon Aurora は、一般的な PostgreSQL データベースと比べてパフォーマンスが最大 3 倍であり、さらにより高いスケーラビリティ、耐用性、およびセキュリティを備えています。詳しくは、Amazon Aurora の製品ページをご覧ください。リージョンごとのサポート状況については、製品およびサービス一覧をご覧ください。 Recent Updates 2018年に入り、RDS for PostgreSQL からの移行に関して機能が追加されています。 Amazon RDS for PostgreSQL のリードレプリカとして Aurora PostgreSQL レプリカの作成:これにより、スナップショットからの移行に比べてよりダウンタイムの短い移行が実現できます。 暗号化されたスナップショットからの移行:これにより暗号化された状態を維持したまま、 RDS for PostgreSQL インスタンスからの移行が可能です。 移行について 既存のデータベースからの移行については、その運用環境に基づいて、いくつかの選択肢が考えられます。RDS for PostgreSQL をご利用の場合、AWS が提供する機能を利用して移行できます。上記のアップデートでも紹介しましたが、具体的には以下の通りです。 Aurora レプリカを利用した RDS for PostgreSQL からのレプリケーション RDS for PostgreSQL スナップショットからの移行 注意点として、上記の2つの機能を利用するためには、現在のところ RDS for […]

Read More

Amazon Aurora: MySQL 5.7互換をリリース

Amazon AuroraのMySQL 5.7互換版が皆様にご利用頂けるようになりました。JSONサポート、空間インデックス、generated columnsなどをご利用頂け、MySQL 5.7より最大5倍高速です。 Amazon Auroraの空間インデックスの作成は、MySQL 5.7よりも20倍以上の書き込みパフォーマンスと10倍以上の読み込みパフォーマンスとなっています。この機能がどのように実装されているかについては、AWSデータベースブログをご覧ください。またAmazon Auroraのドキュメントもご参照下さい。 Aurora with MySQL compatibilityがご利用頂ける13リージョン(US East (N. Virginia), US East (Ohio), US West (Oregon), US West (N. California), Canada (Montreal), Europe (Ireland), Europe (Frankfurt), Europe (London), Europe (Paris), Asia Pacific (Tokyo), Asia Pacific (Sydney), Asia Pacific (Seoul), and Asia Pacific (Mumbai))全てでご利用頂けます。 ハイエンドな商用データベースのパフォーマンスと可用性を、オープンソースデータベースのシンプルさとコスト効率と組み合わせたAmazon Aurora (MySQLとPostgreSQL互換のリレーショナルデータベース)の詳細については、Amazon Auroraの製品ページをご覧ください。 CLIを用いた際のエンジンバージョンの指定方法や、スナップショットを利用したアップグレードなどAurora MySQL5.7互換に関する詳細な情報はドキュメントやフォーラムアナウンスをご覧ください。 […]

Read More

プロセッサの投機的実行 – オペレーティングシステムの更新

モダンコンピュータプロセッサ上で投機的実行によるサイドチャネル分析の調査が新しく公開されたのを受け、AWS は AWS Security Bulletin(セキュリティ情報)AWS-2018-013 を先日公開しました。このセキュリティ情報では、CVE-2017-5715、CVE-2017-5753、および CVE-2017-5754 の3つのセキュリティ勧告に触れています。これらの勧告は Google Project Zero の調査に基づいたもので、Google Project Zero の発表はモダンコンピュータプロセッサ上でのサイドチャネル分析の新しい方法を発見したというものでした。これらの方法は、基礎的な技術、具体的には投機的実行に着目したもので、投機的実行は多くのベンダーのプロセッサに用いられています。そのため研究結果の対象となる範囲は幅広く、その範囲はハイパーバイザーからオペレーティングシステム、さらには Web ブラウザ、携帯電話からクラウドを構成するデータセンター内のサーバにまで及びます。   EC2 インスタンスの分離   Amazon EC2 のすべてのインスタンスは、上述の CVE に記載されたインスタンス間の既知の問題すべてから保護されています。インスタンス間での問題は、インスタンスまたは AWS ハイパーバイザーのメモリを近隣の別のインスタンスから読み取ることができると想定しています。この問題は AWS ハイパーバイザーでは解決されており、インスタンスは別のインスタンスのメモリを読み取ることも、AWS ハイパーバイザーのメモリを読み取ることもできません。 大多数の EC2 ワークロードに有意なパフォーマンスの影響は見られていません。   オペレーティングシステムへのパッチ   現代のオペレーティングシステムには、「ユーザー空間」プロセスからのカーネル分離、それぞれのプロセスの分離などの、いくつかのタイプのプロセス分離があります。影響を受けうるプロセッサ上でオペレーティングシステムが実行されている環境では、いかなる設定においても、公開された 3 つの問題すべてがプロセス分離に影響を与える可能性があります。ハイパーバイザで実装されている保護は、オペレーティングシステム内のプロセスレベルの分離にまで拡張されないため、リスクを軽減するためにオペレーティングシステムパッチが必要です。 準仮想化(PV)インスタンスでは、CVE-2017-5754 のプロセス間の問題に対処するためのオペレーティングシステムレベルの保護は無いことに注意してください。PV インスタンスは、前述のようにインスタンス間の問題について AWS ハイパーバイザーによって保護されます。しかしながら、PV インスタンスにおけるプロセスの分離(信頼できないデータ処理やコードの実行、ユーザのホスト)にご懸念をお持ちでしたら、長期的に見てセキュリティの恩恵を受けるため、HVM インスタンスタイプへの変更を強くお勧めします。PVとHVMの相違点(およびインスタンスアップグレードパスのドキュメント)の詳細については、以下の URL を参照してください。 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html インスタンスのオペレーティングシステムにパッチを適用することで、同じインスタンス内で動作するソフトウェアを分離し、CVE-2017-5754 のプロセス間の問題を緩和することを強く推奨します。以下のオペレーティングシステムのパッチの詳細を記載します。 Amazon Linux & […]

Read More

Amazon Aurora under the hood: Z-order curvesを用いたgeospatial indexの作成

Amazon Auroraのような高性能データベースシステムを設計する場合、一般的に最も幅広いワークロードを大きく改善出来るように取り組みたいと考えるかと思います。しかし時には、ゲームチェンジャーになりえる機会がある場合、特別な用途向けに改善を行うこともあります。 geospatial indexとはなにか、なぜ考慮する必要があるのか? 地理空間分析では、XY(Z)座標に沿った近さ、隣接性、重なりを識別することができます。 そのような分析を実行する必要があるアプリケーションには様々な例があります。タクシーアプリでは、利用可能な最寄りのタクシーを見つけることができます。不動産アプリは、サンフランシスコのPacific Heights地区で販売されている物件を探すことができます。 空間分析は、他にも多くの用途でも役立ちます: マーケティング – 店舗から2マイル以内のすべての見込み顧客をターゲットにプロモーションを行います 資産管理 – 顧客の位置と密度に基づいて影響を最小限に抑えるために修理ユニットを配置します リスク分析 – 顧客の居住地や職場の近くで車の盗難が発生した場合のリスクを見積もります 詐欺検出 – 前回のトランザクションからの距離に基づいて詐欺と考えられる取引の可能性を推定します ロジスティクス計画 – 運行の範囲を最小限にするように、トラブルのチケットを現場の技術者に割り当てます これらのアプリケーションは、高性能な空間データのインデックスから利益を得ることができます。残念なことに、Bツリーのような伝統的なインデックスは、Linlandのために作られたものであり、FlatlandやSpacelandではそうではありません。そのため、高性能な空間インデックスが必要です。 Rツリーとは? 最も一般的に使用される空間インデックスはRツリーです(詳細はこちらの論文を参照してください)。 MySQLとOracleはどちらもR-treeを使用しています。基本的な考え方は、バランスサーチツリーないにバウンダリーレクタングルを保存することです。リーフはデータポイントであり、各内部ノードは、その下のノードのミニマムバウンダリーレクタングルです。したがって、次の例では、長方形Aはリーフノードです。このノードは、矩形NおよびTによって順番に境界が作成されます。 Rツリーの主な問題は、安定していないことです(つまり、決定論的です)。挿入順序が異なると、異なるツリーが生成され、パフォーマンスの特性が大きく異なります。私たちのテストでは、ランダムな挿入順序では、最適な順序で構築されたツリーよりも1桁も性能が劣化したツリーが生成されました。これは、データの挿入順序が予測できず、変更可能なOLTP環境では明らかに問題になります。このような状況では、Rツリーは時間とともに性能が劣化します。1つの回避策は、データを定期的にインデックスを再構築することです。しかし、インデックスの再構築は負荷がかかります。加えて通常この作業は、手作業が必要であり、数時間かかることがあります。また、その期間中の他のトランザクションは遅くなる可能性があります。 そのため、Rツリーは人気がありますが、常に良好なパフォーマンスは得られません。 他にいい方法はあるのか? 私たちはそう考えています!トランザクションと同時実行に最適なデータ構造があります。それはBツリーです。 あらゆる場面で使用され、高いパフォーマンスを発揮するのはデータベースにとって基本です。 しかし、ちょっと待ってください。私はB-treeが多次元データに対してうまく機能しないと言いました。それは本当です。2次元を1次元にマップするトリックがあります。 私たちは、space-filling z-order curves(空間充填zオーダー曲線)を使用して行います。これは、ポイントのz値は、その座標値のバイナリ表現をインターリーブすることによって計算されます。zオーダー曲線は、これらの点をz値の順に横切る線です。たとえば、次の図は、0≤x≤7、0≤y≤7の整数座標の場合のz値を示しています(10進数と2進数の両方を示しています)。 zオーダー曲線上のBツリーの単純な実装では不十分です。なぜこれが当てはまるのかを知るために、以下の例を見てみましょう。緑色の四角形内のすべての点をBツリーで検索すると、クエリー領域外に30個の余分なz値(黄色い三角形の警告標識が付いている物)がスキャンされます。 元のクエリをより少ない偽陽性z値をカバーする小さなクエリに分割することで、この問題を改善します。(これを行うために幾つかの方法を使用していますが、それはこの記事でお伝えする範囲を超えています) それは私たちがポイントするために必要なものすべてを提示します。ポリゴンはどのように空間充填曲線で動作するのでしょうか?ポリゴンが単一点のように見えるまでズームアウトしたとします。どの程度ズームアウトしなければならないかは、ポリゴンの”レベル”によります。各空間オブジェクトは、オブジェクトのレベルとzアドレスの組み合わせとしてBツリーに格納されます。zアドレスがポイントのように見えるまでズームアウトしたので、zアドレスをポイントのように扱うことができます。他のシステムでは、このレベルを手動で指定する必要があります。明らかに、予測不可能で変更可能なデータを扱うOLTPシステムでは動作しません。このレベルはユーザーの設定なしで自動的に設定します。 Auroraのgeospatial indexesは、MySQL 5.7よりもselect-only(1秒当たりの読み込み回数)ワークロードで10倍以上、write-only(1秒当たりの書き込み回数)で20倍以上優れています。具体的には、サイズが1 GB未満のデータセットでSysbenchを使用して、AuroraとAmazon RDS for MySQL 5.7をdb.r3.8xlargeインスタンスを用いて計測しました。select-onlyのテストでは、2,000クライアントとST_EQUALSクエリを使用しました。write-onlyテストでは、4,000のクライアントを使用しました。 ご質問がある場合は、aurora-pm@amazon.comまでご連絡ください。 About the Author Sirish Chandrasekaran is a product […]

Read More

Amazon RDS for PostgreSQL から Amazon Aurora PostgreSQL リードレプリカを作成可能になりました

Amazon Aurora PostgreSQL リードレプリカ(2018/1/23現在英語版ドキュメントのみとなっています)を Amazon RDS for PostgreSQL のインスタンスとして作成し、継続的に Amazon Aurora PostgreSQL へレプリケーション出来るようになりました。これにより、実稼働ワークロードを Amazon RDS for PostgreSQL から Amazon Aurora PostgreSQL に移行する際、アプリケーションとユーザーを Amazon Aurora PostgreSQL へ移す準備ができるまで、インスタンスタイプを同期させておくことで、ダウンタイムを最小化させることが可能です。 Amazon Auroraは、高性能の商用データベースのパフォーマンスや可用性と、オープンソースデータベースのシンプルさや費用対効果を兼ね備えています。スケーラビリティ、耐久性、およびセキュリティの向上とともに、高いクエリ並列度、データサイズが大きい環境下で標準的なPostgreSQLデータベースのパフォーマンスを最大で3倍向上させます。詳細については、Amazon Auroraの製品ページをご覧ください。 翻訳は江川が担当しました。原文はこちらをご覧ください。

Read More

暗号化されたスナップショットを Amazon Aurora PostgreSQL へ移行可能になりました

Amazon RDS for PostgreSQL の暗号化されたスナップショットから Amazon Aurora PostgreSQL へ移行できるようになりました。これにより、Amazon RDS から Amazon Aurora へ移行中の間も、データ暗号化を維持することが可能です。 Amazon Auroraは、高性能の商用データベースのパフォーマンスや可用性と、オープンソースデータベースのシンプルさや費用対効果を兼ね備えています。スケーラビリティ、耐久性、およびセキュリティの向上とともに、高いクエリ並列度、データサイズが大きい環境下で標準的なPostgreSQLデータベースのパフォーマンスを最大で3倍向上させます。詳細については、Amazon Auroraの製品ページをご覧ください。 翻訳は江川が担当しました。原文はこちらをご覧ください。

Read More

Microsoft Azure SQL Database から Amazon Aurora への移行

Oracle や Microsoft SQL Serverなどのライセンスが必要なエンジンから、AWS上で稼働するオープンソースエンジンへ移行する気運がますます高まっています。対象データの移行先として Amazon Aurora が選ばれています。この投稿では AWS Database Migration Service (AWS DMS) を用いた Microsoft Azure SQL database から Amazon Aurora MySQL クラスタへの移行方法を紹介します。 前提条件 この記事では、Azure SQLデータベースが既にインストールされていることを前提としています。移行には、このデータベースの接続情報(DNSエンドポイント、ユーザー名、パスワードなど)が必要です。また、移行作業に使用するユーザには、Azure SQLデータベースのデータにアクセスするための適切な権限が必要です。 記事の目的に合わせ、ターゲット(移行先データベース)として Amazon Aurora クラスタを作成します。 AWS DMSはソース(移行元データベース)およびターゲットとして、様々なデータベースエンジンをサポートしていますが、多くのお客様は独自のストレージエンジンを使用したAmazon Auroraを選択します。このエンジンは、3つのアベイラビリティゾーンに跨る耐久性、自動ポイントインタイムバックアップ、最大15台の低レイテンシ読み取りレプリカを実現します。 ターゲット用の Aurora クラスタを既に作成している場合は、新規に作成する必要はありません。新しい Aurora クラスタを作成する場合は、Amazon Aurora DB クラスタ作成の手順を参照してください。 AWS DMS インフラのセットアップ ここまででソースとターゲットの情報が確認できたので、AWS DMS インフラを設定していきましょう。 AWS DMSは非常に高い柔軟性をもつ為、多くのコンポーネントから構成されています。AWS CloudFormationを使用することで、これらのコンポーネントをまとめて単一の「スタック」にグループ化し、原子性を保った1つのユニットとして何度も再作成することができます。 AWS CloudFormation のコンソールを開いて設定を始めます。 […]

Read More

Amazon RDS for PostgreSQL が新しいマイナーバージョン 9.6.6, 9.5.10, 9.4.15, 9.3.20 をサポート

PostgreSQL コミュニティによるアップデートに追従し、PostgreSQL のマイナーバージョンである 9.6.6, 9.5.10, 9.4.15, 9.3.20 が Amazon RDS for PostgreSQL でサポートされました。このリリースでは、PostgreSQLの3つのセキュリティ上の脆弱性が修正され、追加のバグ修正と改善が行われています。 このアップデートでは、Oracle Database で利用される関数、パッケージの一部を実装した Extension “orafce” と、プレフィックスマッチングを提供する Extension “prefix” のサポートがバージョン 9.6.6 に含まれています。 マネジメントコンソールを使い数クリックで新たな RDS for PostgreSQL を作成するか、既存のインスタンスをワンクリックでアップグレードすることで、新しいバージョンを利用できます。アップグレードする場合、短いダウンタイムが発生することにご注意ください。データベースインスタンスをアップグレードするにあたっての詳細は、 Amazon RDS ユーザーガイドをご覧ください。 Amazon RDS for PostgreSQL は、クラウドで簡単に PostgreSQL を設定、運用、スケール可能です。それぞれのリージョンでご利用いただけるかどうかは、Amazon RDS for PostgreSQL の料金ページをご覧ください。 翻訳は江川が担当しました。原文はこちらです。

Read More

Amazon RDS for MySQLとMariaDBのログをAmazon CloudWatchで監視出来るようになりました

Amazon RDSは、トラブルシューティングなどの目的にお使い頂けるように、DBインスタンスで生成されたログを表示およびダウンロードする機能を提供してきました。Amazon Relational Database Service(Amazon RDS) for MySQLとAmazon RDS for MariaDBでは、DBインスタンスのログイベントをAmazon CloudWatch Logsに直接保存出来るようになりました。これにより、AWSサービスを使用して、よりシームレスにDBインスタンスログを扱うことができます。 DBインスタンスログのニアリアルタイム分析 Amazon CloudWatch Logsを使用すると、アプリケーションの様々なコンポーネントからのログを集中的かつ永続的に保存できます。また、特定のフレーズ、値、パターン(メトリック)について、ニアリアルタイムでログを監視することもできます。さらに、設定した状態が発生したときに警告するアラームを設定することもできます。Amazon CloudWatchは他の様々なAWSサービスと統合することが可能です。これにより、以下のような幅広いユースケースでログを利用する価値を向上できます: 通常デジではありえない大量のスロークエリや接続の失敗など、異常な状態を検知するためのアラーム設定 他のアプリケーションログと関連させる セキュリティおよびコンプライアンスの目的でログを保持する ログデータの傾向を分析する 以下の図がアーキテクチャの概要です: ログエクスポートの概念 新しいログエクスポート機能は、MySQLおよびMariaDBの次のログタイプをサポートしています: Error log – 起動および停止にデータベースエンジンによって生成された診断メッセージが含まれています General query log – クライアントから受け取ったすべてのSQLステートメントのレコードと、クライアントの接続および切断時間を含みます Slow query log – 設定された時間よりも実行に時間かかったクエリや、定義された行数を超える行を走査したSQL文のレコードが含まれています。 両方の閾値は設定可能です Audit log – MariaDB Audit Pluginを使用して提供されるこのログは、監査目的でデータベースアクティビティを記録します これらのソースからのログイベントは、Amazon CloudWatchのロググループにログストリーム(ログイベントのシーケンス)の形式で保存されます。 各DBインスタンスとログの種類に応じて、DBインスタンスと同じAWS Region内に別のグループを次の命名パターンで作成します: /aws/rds/instance/<db-instance-id>/<log-type> ログデータは耐久性のあるCloudWatch Logsに保存され、透過的に暗号化されます。ただし、ログには機密情報が含まれている可能性があります。データを保護するために、アカウント内の適切なユーザーにアクセスを制限する必要があります。そのために、データベースログを含むロググループに対して適切なIAMアクセスポリシーを設定することが重要です。 Amazon RDSはDBインスタンスと同じアカウント内のロググループにservice-linked roleを使用してログを送信します。これにより、Amazon RDSはアカウント内の関連するロググループにアクセスできます。ログの送信を有効にすると、AWSServiceRoleForRDSという追加のIAMロールが表示されることがあります。 CloudWatch Logsへログの送信を有効にするには、以下のように設定を行います。 […]

Read More

AWS DMS と Amazon Kinesis Data Firehose を利用した Aurora PostgreSQL データベースへのストリームデータのロード

AWS Database Migration Service (AWS DMS) を利用することで、様々なデータソースから商用データベースやオープンソースデータベースへとデータを移行できます。このサービスでは、Oracle Database から Oracle Database への移行といった同一のDBMS製品間での移行をサポートしています。また、Oracle Database から Amazon Aurora, Microsoft SQL Server から MySQL へといった異なるプラットフォーム間での移行もサポートしています。さらに、ストリーミングデータを Amazon S3 から Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle, SQL Server を含む様々な移行先へ配信することが可能です。 Amazon Kinesis Data Firehose は、AWS へストリーミングデータをロードする上で、最も簡単な方法です。ストリーミングデータのキャプチャ、変換を行い、Amazon Kinesis Data Analytics, Amazon S3, Amazon Redshift, Amazon Elasticsearch Service へロードできます。Firehose を利用することで、すでに利用しているビジネスインテリジェンスツールやダッシュボードを使い、ニアリアルタイム分析が可能となります。Firehose はお客様が送信するデータのスループットに合わせて自動的にスケールするフルマネージドサービスで、継続した運用管理を必要としません。Firehose は、ロード前にデータをまとめ、圧縮し、暗号化することで、ロード先のストレージで必要な容量を最小化したり、セキュリティを向上させたりすることができます。 AWS DMS […]

Read More