Amazon Web Services ブログ

Category: Advanced (300)

Amazon FSx for NetApp ONTAP を使用した SQL Server Always On Failover Cluster インスタンスの HA と DR の実装

このブログでは、高可用性と災害復旧の SQL Server Failover Cluster インスタンスアーキテクチャを設計する際の基準となるアーキテクチャパターンを説明します。Amazon FSx for NetApp ONTAP ファイルシステムの NetApp SnapMirror によるレプリケーション機能を活用して、2 つの AWS リージョンにまたがるデータレプリケーションを実現します。

Amazon SageMaker、Amazon OpenSearch Service、Streamlit、LangChain を使った質問応答ボットの構築

エンタープライズ企業における生成系 AI と大規模言語モデル (LLM) の最も一般的な用途の 1 つは、企業の知識コーパスに基づいた質問応答です。Amazon Lex は AI ベースのチャットボットを構築するためのフレームワークを提供します。事前学習済みの基盤モデル (Foundation Models; FM) は、さまざまなトピックに関する要約・テキスト生成・質問応答などの自然言語理解 (NLU) タスクではうまく機能しますが、幻覚やハルシネーションと言われる不正確な情報を含まない回答を提供するのが難しい、もしくは、学習データに含まれない内容に関する質問へ回答することはできません。さらに、基盤モデルは特定の時点のデータをスナップショットとして使用してトレーニングされており、推論時に新しいデータにアクセスすることはできません。推論時に最新のデータにアクセスできない場合、不正確または不適切な応答を返す可能性があります。

AWS Backup を用いたデータレイク保護のベストプラクティス

AWS Backup によるデータレイク保護のベストプラクティス

Amazon Simple Storage Service (Amazon S3)で構築したデータレイクは、より深いインサイトを得るための最新の分析アプローチに必要な可用性、俊敏性、柔軟性を組織に提供します。これらの Amazon S3 バケットに保存されている機密情報やビジネス上重要な情報を保護することは、組織にとって最優先事項です。AWS Backup for Amazon S3 を使用すると、Amazon S3 を利用したデータレイク内の重要なデータのバックアップとリカバリを簡単に一元的に自動化できます。

Amazon SageMaker Canvas の ML 予測を使用して Amazon QuickSight に予測ダッシュボードをパブリッシュ

この記事では、予測を明示的にダウンロードして QuickSight にインポートしなくても、Canvas から ML ベースの予測を使用して QuickSight で予測ダッシュボードを公開する方法を説明します。このソリューションを使用すると、Canvas から QuickSight に予測を送信できるため、機械学習を使用して意思決定を迅速に行い、効果的なビジネス成果を達成できます。