亚马逊AWS官方博客
Category: Artificial Intelligence
SNCF Réseau 和 Olexya 如何将 Caffe2 计算机视觉流水线任务迁移至 Amazon SageMaker 中的 Managed Spot Training
Amazon SageMaker支持从数据注释、到生产部署、再到运营监控的整个ML开发周期。正如Olexya与SNCF Réseau的工作所示,Amazon SageMaker具有良好的框架中立性,能够容纳各类深度学习工作负载及框架。除了预先为Sklearn、TensorFlow、PyTorch、MXNet、XGBoost以及Chainer创建配套Docker镜像与SDK对象以外,您也可以使用自定义Docker容器,几乎任何框架,如PeddlePaddle、Catboost、R以及Caffe2。
使用 Amazon Translate 自动翻译PPT
本文介绍了一套基于脚本的自动翻译解决方案,能够使用Amazon Translate将演示文稿中的文本翻译成多种语言。关于更多详细信息,请参阅什么是Amazon Translate。
使用 Amazon SageMaker Ground Truth, Amazon Comprehend 与 Amazon A2I 为基于 NLP 的实体识别模型设置人工审查
本文演示了如何使用Ground Truth NER为Amazon Comprehend自定义实体识别结果创建注释。我们还使用Amazon A2I以更新并改进Amazon Comprehend的低置信度预测结果。
基于 Amazon SageMaker 创建一套持久的定制化 R 环境
本文引导大家为Amazon SageMaker notebook实例创建自定义持久R环境。关于Amazon SageMaker上的R notebooks,请参阅Amazon SageMaker示例GitHub repo。关于创建基于R内核的Amazon SageMaker notebook实例的更多详细信息,请参考在Amazon SageMaker notebook实例上使用R代码博文。
使用 Amazon SageMaker 与 Deep Graph Library 在异构网络中检测欺诈活动
在本文中,我们讲解了如何根据用户交易与活动构建异构图,并使用该图及其他收集到的特征训练GNN模型,最终对交易的欺诈性做出预测。本文还介绍了如何使用DGL与Amazon SageMaker定义并训练具备高预测性能的GNN模型。关于此项目的完整实现以及其他GNN模型详细信息,请参见GitHub repo。
使用 Amazon Textract、Amazon Comprehend 以及 Amazon Lex 从发票中提取会话式洞见
本文介绍了如何在Amazon Lex中创建一款会话式聊天机器人,使用Amazon Textract从图像或PDF文档中提取文本,使用Amazon Comprehend从文本中提取洞见,并通过机器人实现与洞见的交互。本文中所使用的代码皆发布在GitHub repo 当中,供您随意使用及扩展。我们也期待了解您如何将这套解决方案应用于实际用例,请在评论区中分享您的观点与疑问。
对 PyTorch BERT 模型进行微调,并将其部署到 Amazon SageMaker 上的 Amazon Elastic Inference
在本文中,我们使用Amazon SageMaker以BERT为起点,训练出一套能够标记句子语法完整性的模型。接下来,我们将模型分别部署在使用Elastic Inference与不使用Elastic Inference的Amazon SageMaker终端节点。您也可以使用这套解决方案对BERT做其他方向的微调,或者使用PyTorch-Transformers提供的其他预训练模型。
Key Messages as Tag
REA Group 如何利用 Amazon Rekognition 实现自动化图像合规审查
大家可以在Amazon Rekognition控制台上,根据你的业务要求测试Amazon Rekognition的图像文本识别效果。关于Amazon Rekognition文本检测API的更多详细信息,请参阅Amazon Rekognition说明文档。
将 Amazon SageMaker 与 Amazon Augmented AI 结合使用以人工查看表格数据和机器学习预测
本文展示了两个用例,分别通过Amazon A2I将表格数据引入人工审核工作流中,且分别对应不可变静态表与动态表。当然,本文对于Amazon A2I功能的表述只能算是冰山一角。目前Amazon A2I已经在12个AWS区域内正式上线,关于更多详细信息,请参阅区域表。
在 Amazon SageMaker notebook 实例上使用 R 编程
本文引导大家完成了一个端到端机器学习项目,全面涵盖数据收集、数据处理、模型训练、将模型部署为端点、使用所部署模型进行推理等各个步骤。