亚马逊AWS官方博客

Category: Artificial Intelligence

使用 Amazon SageMaker 在生产环境中对机器学习模型 A/B 测试

Amazon SageMaker可帮助用户在端点之上运行多个生产变体,从而轻松对生产环境中的ML模型进行A/B测试。大家可以使用SageMaker提供的功能配合不同训练数据集、超参数、算法以及ML框架测试由此训练出的模型,了解它们在不同实例类型上的执行性能,并将各项因素整合起来形成不同搭配。我们还可以在端点上的各变体之间进行流量分配,Amazon SageMaker会根据指定的分发方式将推理流量拆分并分发至各个变体。

在基于 AWS Inferentia 的 Inf1 实例上部署 TensorFlow OpenPose,借此显著提高资源性价比

在本文中,我们分步完成了对OpenPose TensorFlow版开源模型的编译,更新自定义端到端图像处理管道,并体验了能够在EC2 Infi1实例之上对ML推理时间做出分析及深度优化的工具。在调优之后,Neuron编译的TensorFlow模型较现有费率最低的GPU实例实现72%的成本节约,且性能仍旧保持一致。本文中阐述的各项操作步骤,也适用于其他ML模型类型与框架。关于更多详细信息,请参阅AWS Neuron SDK GitHub repo。

使用 Amazon Personalize 与 Braze 个性化推荐功能优化营销活动参与度

时至今日,营销人员正通过各类消息力争吸引到客户的注意力,这也意味着大家必须能够在正确的时间、以正确的渠道将正确的消息传递给明确定位的正确用户。Braze为前三项难题提供解决方案,而大家也可以将Braze Connected Content与Amazon Personalize集成起来以攻克最后一个挑战,真正整理出能够反映每一位客户当前偏好、具有高度个性化的产品与内容建议。

开发应用程序迁移方法以使用 Amazon Redshift 使您的数据仓库现代化

本文展示一款简单的应用程序,可供制药企业、医疗保健专业人士以及消费者通过药监局及国家卫生研究院等权威来源处查找有用信息。使用这套架构及相关代码库,您可以将这套解决方案整合至关于不良事件分析及报告的其他下游应用程序当中。我们希望本文能够帮助大家接触ML技术、提高ML采用率,同时改善患者的预后与护理质量。

使用 Amazon Comprehend Medical 以自然语言为基础查询药物不良反应与召回事件

本文展示一款简单的应用程序,可供制药企业、医疗保健专业人士以及消费者通过药监局及国家卫生研究院等权威来源处查找有用信息。使用这套架构及相关代码库,您可以将这套解决方案整合至关于不良事件分析及报告的其他下游应用程序当中。我们希望本文能够帮助大家接触ML技术、提高ML采用率,同时改善患者的预后与护理质量。

使用 Amazon Textract 与 Amazon Comprehend 从文档中提取自定义实体

机器学习与人工智能能够极大提升组织的敏捷水平,将原本只能手动完成的任务转为自动化流程,借此增强执行效率。在本文中,我们演示了一套端到端架构,可通过Amazon Textract与Amazon Comprehend提取候选人技能等自定义实体。本文还将大家讲解了如何使用Amazon Textract进行数据提取,以及如何使用Amazon Comprehend通过您的自有数据集训练自定义实体识别器,并借此实现自定义实体识别。这一流程可以广泛应用于各个行业,例如医疗保健与金融服务等。

使用 Amazon Translate 以 Office Open XML 格式翻译文档、电子表格与演示文稿

在本文中,我们探讨了如何通过异步批量翻译对DOCX格式的文档进行翻译。关于翻译电子表格与演示文稿,其过程与翻译DOCX文件相同。AWS提供的翻译服务Amazon Translate使用简单,且您只需要根据翻译的每种格式的文档中的字符数(包含空格)进行付费。您现在可以在支持批量翻译的所有区域内翻译Office文档。如果您还不熟悉Amazon Translate,不妨先从Free Tier免费套餐起步。此套餐将从您提交的第一项翻译请求开始,在随后的12个月内每月提供2百万个字符的免费翻译配额。