Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

    Listing Thumbnail

    Amazon SageMaker Jumpstarts

     Info
    Amazon SageMaker JumpStart offers over 350 built-in algorithms, pre-trained models, and pre-built solution templates to help you get started with ML fast. JumpStart provides one-click access to a wide variety of pre-trained models for common ML tasks such as object detection, text classification, summarization, text generation and much more.
    Listing Thumbnail

    Amazon SageMaker Jumpstarts

     Info

    Overview

    Amazon SageMaker JumpStart is the machine learning (ML) hub of SageMaker that offers over 350 built-in algorithms, pre-trained models, and pre-built solution templates to help you get started with ML fast. JumpStart provides one-click access to a wide variety of pre-trained models for common ML tasks such as object detection, text classification, summarization, text generation and much more. SageMaker Jumpstart also provides pretrained foundation models like Stability AI’s Stable Diffusion text-to-image model, BLOOM, Cohere’s Generate, Amazon’s AlexaTM and more. You can fine-tune and deploy JumpStart models using the UI in Amazon SageMaker Studio or using the SageMaker Python SDK extension for JumpStart APIs. JumpStart APIs unlock the usage of JumpStart capabilities in your workflows, and integrate with tools such as the model registry that are part of MLOps pipelines and anywhere else you’re interacting with SageMaker via SDK.

    Highlights

    • Use Amazon SageMaker to accomplish various machine learning lifecycle tasks, including data preparation, training, deployment, and MLOps.

    Details

    Delivery method

    Pricing

    Custom pricing options

    Pricing is based on your specific requirements and eligibility. To get a custom quote for your needs, request a private offer.

    How can we make this page better?

    We'd like to hear your feedback and ideas on how to improve this page.
    We'd like to hear your feedback and ideas on how to improve this page.

    Legal

    Content disclaimer

    Vendors are responsible for their product descriptions and other product content. AWS does not warrant that vendors' product descriptions or other product content are accurate, complete, reliable, current, or error-free.

    Support