Listing Thumbnail

    Structured Synthetic Data Evaluator

     Info
    Sold by: Mphasis 
    Deployed on AWS
    This solution evaluates tabular synthetic data against original data provided across various statistical similarity and privacy metrics

    Overview

    Synthetic Data is pertinent to deriving business insights without compromising on privacy. Synthetic Data Evaluation is a process to audit your synthetic data for ensuring high utility and privacy in downstream usecases. The evaluation is done on attribute similarity (statistical similarity, tabular correlation difference), model detection metrics (ability to segregate synthetic and original data points), missing levels in categorical attributes, privacy at risk data points and sensitive data retrieval (adversarial attack easiness). This solution provides an assessment of your provided synthetic structured data on the basis of these metrics.

    Highlights

    • This solution supports single table structured data evaluation. It can be used to evaluate synthetic data for industries like financial services, healthcare and retail.
    • The solution helps in measuring attribute similarity, data driven discovery, missing levels in categorical attributes, privacy at risk data points, sensitive data retrieval. This allows companies to decide on data sharing for further downstream processes.
    • Mphasis Synth Studio is an Enterprise Synthetic Data Platform for generating high-quality synthetic data that can help derive and monetize trustworthy business insights, while preserving privacy and protecting data subjects. Build reliable and high accuracy models when no or low data is available.

    Details

    Delivery method

    Latest version

    Deployed on AWS

    Unlock automation with AI agent solutions

    Fast-track AI initiatives with agents, tools, and solutions from AWS Partners.
    AI Agents

    Features and programs

    Financing for AWS Marketplace purchases

    AWS Marketplace now accepts line of credit payments through the PNC Vendor Finance program. This program is available to select AWS customers in the US, excluding NV, NC, ND, TN, & VT.
    Financing for AWS Marketplace purchases

    Pricing

    Structured Synthetic Data Evaluator

     Info
    Pricing is based on actual usage, with charges varying according to how much you consume. Subscriptions have no end date and may be canceled any time.
    Additional AWS infrastructure costs may apply. Use the AWS Pricing Calculator  to estimate your infrastructure costs.

    Usage costs (52)

     Info
    Dimension
    Description
    Cost/host/hour
    ml.m5.large Inference (Batch)
    Recommended
    Model inference on the ml.m5.large instance type, batch mode
    $10.00
    ml.m5.large Inference (Real-Time)
    Recommended
    Model inference on the ml.m5.large instance type, real-time mode
    $5.00
    ml.m4.4xlarge Inference (Batch)
    Model inference on the ml.m4.4xlarge instance type, batch mode
    $10.00
    ml.m5.4xlarge Inference (Batch)
    Model inference on the ml.m5.4xlarge instance type, batch mode
    $10.00
    ml.m4.16xlarge Inference (Batch)
    Model inference on the ml.m4.16xlarge instance type, batch mode
    $10.00
    ml.m5.2xlarge Inference (Batch)
    Model inference on the ml.m5.2xlarge instance type, batch mode
    $10.00
    ml.p3.16xlarge Inference (Batch)
    Model inference on the ml.p3.16xlarge instance type, batch mode
    $10.00
    ml.m4.2xlarge Inference (Batch)
    Model inference on the ml.m4.2xlarge instance type, batch mode
    $10.00
    ml.c5.2xlarge Inference (Batch)
    Model inference on the ml.c5.2xlarge instance type, batch mode
    $10.00
    ml.p3.2xlarge Inference (Batch)
    Model inference on the ml.p3.2xlarge instance type, batch mode
    $10.00

    Vendor refund policy

    Currently we do not support refunds, but you can cancel your subscription to the service at any time.

    How can we make this page better?

    We'd like to hear your feedback and ideas on how to improve this page.
    We'd like to hear your feedback and ideas on how to improve this page.

    Legal

    Vendor terms and conditions

    Upon subscribing to this product, you must acknowledge and agree to the terms and conditions outlined in the vendor's End User License Agreement (EULA) .

    Content disclaimer

    Vendors are responsible for their product descriptions and other product content. AWS does not warrant that vendors' product descriptions or other product content are accurate, complete, reliable, current, or error-free.

    Usage information

     Info

    Delivery details

    Amazon SageMaker model

    An Amazon SageMaker model package is a pre-trained machine learning model ready to use without additional training. Use the model package to create a model on Amazon SageMaker for real-time inference or batch processing. Amazon SageMaker is a fully managed platform for building, training, and deploying machine learning models at scale.

    Deploy the model on Amazon SageMaker AI using the following options:
    Deploy the model as an API endpoint for your applications. When you send data to the endpoint, SageMaker processes it and returns results by API response. The endpoint runs continuously until you delete it. You're billed for software and SageMaker infrastructure costs while the endpoint runs. AWS Marketplace models don't support Amazon SageMaker Asynchronous Inference. For more information, see Deploy models for real-time inference  .
    Deploy the model to process batches of data stored in Amazon Simple Storage Service (Amazon S3). SageMaker runs the job, processes your data, and returns results to Amazon S3. When complete, SageMaker stops the model. You're billed for software and SageMaker infrastructure costs only during the batch job. Duration depends on your model, instance type, and dataset size. AWS Marketplace models don't support Amazon SageMaker Asynchronous Inference. For more information, see Batch transform for inference with Amazon SageMaker AI  .
    Version release notes

    Version 1.3

    Additional details

    Inputs

    Summary

    The input is a zip file containing the following files:

    1. original data
    2. synthetic data
    3. metadata mentioning non-sensitive/key fields and sensitive fields.

    Please note the metadata information is mandatory for deriving the sensitive data retrieval test metric.

    Limitations for input type
    The sensitive and non-sensitive fields should be of same type (both are continuous variables).
    Input MIME type
    application/zip, text/plain
    https://github.com/Mphasis-ML-Marketplace/Structured-Synthetic-Data-Evaluation/blob/main/input/Input.zip
    https://github.com/Mphasis-ML-Marketplace/Structured-Synthetic-Data-Evaluation/blob/main/input/Input.zip

    Resources

    Vendor resources

    Support

    Vendor support

    For any assistance reach out to us at:

    AWS infrastructure support

    AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.

    Similar products

    Customer reviews

    Ratings and reviews

     Info
    0 ratings
    5 star
    4 star
    3 star
    2 star
    1 star
    0%
    0%
    0%
    0%
    0%
    0 AWS reviews
    No customer reviews yet
    Be the first to review this product . We've partnered with PeerSpot to gather customer feedback. You can share your experience by writing or recording a review, or scheduling a call with a PeerSpot analyst.