
Overview
Databricks at AWS re:Invent 2024
Databricks at AWS re:Invent 2024

Product video
Get started today with up to $400 in usage credits during your 14-day free trial. Trial ends the earlier of when credits are consumed or the 14-day period expires. After your trial ends, you will be automatically enrolled into a Databricks pay-as-you-go plan using the payment method associated with your AWS Marketplace account, paying only for what you use and you can cancel anytime. You can view the full per-product rates for Databricks Units (DBUs) at https://www.databricks.com/product/pricing
The Databricks Data Intelligence Platform allows your entire organization to use data and AI. Its built on a lakehouse to provide an open, unified foundation for all your data and governance. And its powered by a Data Intelligence Engine that speaks the language of your organization so anyone can access the data and insights they need.
The Data Intelligence Platform simplifies your modern data stack by eliminating the data silos that traditionally separate and complicate data engineering, analytics, BI, data science and machine learning. Databricks is built on open source and open standards to maximize flexibility. And the platforms common approach to data management, security and governance helps you operate more efficiently and innovate faster across all analytics use cases.
Reach out to sales@databricks.com to get specialized configurations and pricing for Databricks on AWS Marketplace on a contract basis.
** Technical Support: For help setting up your account, connecting to data, or exploring the platform please reach out to awsmp-onboarding-help@databricks.com **
Highlights
- Simple: Databricks provides a simplified data architecture by unifying data, analytics and AI workloads on one common platform running on Amazon S3.
- Open: Built on top of the world's most successful open source data projects, the Lakehouse Platform unifies your data ecosystem with open standards and formats.
- Collaborative: With native collaboration capabilities, the Databricks Lakehouse Platform unifies data teams to collaborate across the entire data and AI workflow.
Details
Introducing multi-product solutions
You can now purchase comprehensive solutions tailored to use cases and industries.
Features and programs
Buyer guide

Financing for AWS Marketplace purchases
Pricing
Free trial
Dimension | Cost/unit |
|---|---|
Databricks Consumption Units | $1.00 |
Vendor refund policy
No refunds
Custom pricing options
How can we make this page better?
Legal
Vendor terms and conditions
Content disclaimer
Delivery details
Software as a Service (SaaS)
SaaS delivers cloud-based software applications directly to customers over the internet. You can access these applications through a subscription model. You will pay recurring monthly usage fees through your AWS bill, while AWS handles deployment and infrastructure management, ensuring scalability, reliability, and seamless integration with other AWS services.
Resources
Support
Vendor support
Please reach out to sales@databricks.com with any questions or for options on contract or pricing terms.
Technical Support: For help setting up your account, connecting to data, or exploring the platform please reach out to awsmp-onboarding-help@databricks.com
For additional training:
AWS infrastructure support
AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.


Standard contract
Customer reviews
Unified data workflows have cut ticket processing times and are driving faster business insights
What is our primary use case?
My main use case for Databricks involves the pipelines and ETL processes that we are implementing. Following the Medallion architecture with Gold, Silver, and Bronze layers, we filter the data, perform transformations, and integrate AI. Databricks has made this process significantly easier.
I worked for an airline company where they experienced substantial delays in data processing. When a passenger booked a ticket, it took 20 to 25 minutes for the transaction to reflect in the system. Using Databricks, we compressed that time from 10 to 6 minutes initially and eventually reduced it to just a few seconds. After setting up all the pipelines and leveraging Databricks features to enhance and accelerate the process, this project became truly impactful and time-based, resulting in reduced processing time and ultimately increased profit for the airline company.
What is most valuable?
The best features Databricks offers are Unity Catalog, Databricks Workflow, Databricks AI, Agentic AI, and the automated pipelines that utilize AI. The AI models are very easy to create and deploy in just a few seconds. These are helpful and user-friendly tools.
I find myself using Unity Catalog most frequently because it provides a unified governance solution for all data and AI needs on Databricks, offering centralized access control, auditing, lineage, and data discovery capabilities across the platform. The main features include access control, security compliance standard models, built-in auditing, and lineage tracking. Most of my projects have involved integrating Unity Catalog into systems and providing overall security, including a migration project to transition to Unity Catalog.
The platform's unified data intelligence capabilities allow teams to analyze, manage, and activate data at scale, leading to faster time to insights, cleaner data pipelines, and significant savings on infrastructure and engineering efforts. Databricks eliminates data silos, accelerates the time to insight, empowers all data personnel, and provides built-in governance and security. It also supports AI and ML, which is an added advantage in today's AI-driven field.
What needs improvement?
Databricks already provides monthly updates and continuously works on delivering new features while enhancing existing ones. However, the platform could become easier to use. While instruction-led workshops are available, offering more free instructional workshops would allow a wider audience to access and learn about Databricks. Additionally, providing use cases would help beginners gain more knowledge and hands-on experience.
Regarding my experience, I was initially unfamiliar with the platform and had to conduct research and learn through various videos. I did find some instruction-led classes, but several of those required payment. The platform should provide more free resources to enable a broader audience to access and learn about Databricks. The platform itself is user-friendly and easy to use without complex issues, so I believe it does not need improvement in its core functionality. Rather, supporting aspects can be enhanced.
For how long have I used the solution?
I have been working as a data engineer for four years. Initially, I was a software engineer, but my career has progressed as a data engineer over this four-year period.
What was our ROI?
Definitely. As I mentioned regarding my airline project, it was impactful because the cost was reduced by 60 to 70 percent. The company was initially using Azure Blob storage, and in Databricks, the cluster and associated infrastructure were cheaper than other platforms. This reduction in both time and money resulted in real-time impact and significant cost savings.
What other advice do I have?
For advice for others considering Databricks, it is important to start by understanding its place in the data ecosystem and how it fits into your specific needs. Key points to consider include familiarizing yourself with Databricks, learning the basics, starting with data engineering, and incorporating ETL processes. You can then dive deeper into Databricks features such as notebooks, clusters, and jobs. Achieving certification enhances your skills validation. For best practices, it is critical to optimize performance and minimize complexity while continuously learning to stay competitive in the data field. Following these steps will be very beneficial for anyone pursuing a career as a data engineer and Databricks engineer.
Databricks is a truly essential platform for data engineering needs, and I recommend it to anyone looking to advance in the data engineering field. It is a very important platform and tool for every data engineer. I encourage everyone to learn and explore this product and to maximize its potential. I rate this product a 9 out of 10.
AI Integration with the Data Lakehouse Made Databricks a Clear Choice
Report 1100
Effortless Data Insights and Governance
Databricks -Scalable Data
2. Used frequently for data engineering, analytics, and ML workloads.
3. Implementation is structured and scalable, especially on cloud environments.
2. Too many advanced features can feel overwhelming for smaller teams.
3. Initial setup and architecture planning take time and skilled resources.
2. Handles large data volumes reliably, supporting daily and recurring workloads.
3. Reduces time spent managing infrastructure so I can focus on insights and outcomes.