亚马逊AWS官方博客

AWS Team

Author: AWS Team

构建自定义 Angular 应用程序以使用 Amazon SageMaker Ground Truth 标记作业

本文展示了如何使用Angular与Ground Truth构建自定义的数据标注UI界面。该解决方案能够在标记作业创建过程中,处理各自定义模板中不同范围之间的通信活动。充分使用Angular等自定义前端框架的功能,帮助大家轻松创建现代Web应用程序,从而在公共、内部或者来自供应商的标记工作人员的配合下切实满足您的数据标注需求。

Read More

使用 Ubuntu18 DLAMI,P3dn 实例与 EFA,和 Amazon FSx for Lustre 实现大规模多 GPU 分布式深度学习训练

为深度学习训练设置机器学习基础设施往往是一项艰巨的任务,您通常需要依赖基础设施团队构建起相应环境,这将极大浪费宝贵的生产时间。此外,深度学习技术库与软件包也一直在快速变化,您需要测试各软件包之间的互操作性。使用Ubuntu 18 DLAMI,您将无需担心于基础设施设置与软件安装工作。AWS DLAMI已经为所有主流机器学习框架预先构建了必要的深度学习库与软件包,让您能够专注于模型的训练、调优与推理。

Read More

在 SageMaker 临时实例上调度 Jupyter notebooks

一个星期五的下午五点,您花费了整整一个下午在编码处理一个复杂、繁琐的特征工程策略。这个策略在您的Amazon SageMaker Studio t3.medium notebook上已经开始工作,你想做的是插入这个策略到一个大型实例中,通过水平扩展将其覆盖剩余数据集,然后下班回家。虽然您可以直接升级notebook实例,但只要一关上您的电脑,这项作业马上就会停止。既然如此,为什么不直接从您的notebook调度作业?

Read More

用于 Kubeflow Pipelines 的 Amazon SageMaker Components 介绍

本文介绍了如何配置Kubeflow Pipelines以通过Amazon SageMaker运行机器学习作业。Kubeflow Pipelines是一套开源机器学习编排平台,在希望立足Kubernetes构建并管理自定义机器学习工作流的开发者群体中广受欢迎。但不少开发人员及MLOps团队在Kubeflow Pipelines的实际运营中遭遇挑战,发现自己难以管理Kubernetes集群的机器学习优化工作,无法获得良好的投资回报率或者承担极高的总体拥有成本。

Read More

在 StockX 上使用 Amazon Personalize 开创个性化用户体验

“为您推荐”成为我们团队乃至整个StockX公司的一次巨大胜利。我们开始迅速将机器学习技术整合至企业中的各个层面。而我们获得的成功,也使得企业决策者同意在更多StockX体验场景当中集成Amazon Personalize,并不断扩大我们在机器学习领域投入的精力。可以肯定地讲,个性化如今已经成为StockX内部的头等大事。

Read More