亚马逊AWS官方博客
Category: Artificial Intelligence
Mantium 如何在 Amazon SageMaker 上使用 DeepSpeed 实现低延迟 GPT-J 推理
Mantium 是一家全球云平台提供商,致力于构建 AI 应用程序并对它们进行规模化管理。利用 Mantium 的端到端开发平台,与传统方式相比,各种规模的企业能更快、更轻松地构建 AI 应用程序和实现自动化。借助 Mantium,技术和非技术团队可采用低代码方式原型设计、开发、测试和部署 AI 应用程序。通过自动日志记录、监控和安全功能,Mantium 还解放了软件和 DevOps 工程师,他们不需要花时间做重复性工作了。
推荐系统系列之推荐系统概览(上)
在当今信息化高速发展的时代,推荐系统是一个热门的话题和技术领域,一些云厂商也提供了推荐系统的SaaS服务比如亚马逊云科技的Amazon Personalize来解决客户从无到有迅速构建推荐系统的痛点和难点。在我们的日常生活中,推荐系统随处可见,我根据这几年参与的推荐系统和计算广告项目总结了一些实践经验并以推荐系统系列文章的形式分享给大家,希望大家看后对推荐系统有更全新更深刻的理解。
Data-centric AI之数据集质量
数据集的质量再如何强调都不过分,我认为在数据这个领域,数据集的质量就是第一要务。对于机器学习来说,没有高质量的数据集作为前提,模型就学习不到有用的知识,也就是所谓的“垃圾进,垃圾出”。数据集的质量是个很大的话题,本文根据我在多个计算广告和推荐系统的项目中的实战经验尝试总结一下,其实对于结构化数据建模来说,基本上下面谈到的内容都是通用的。
在Amazon SageMaker上进行XGBoost分布式训练
本文介绍了如何使用SageMaker内置的XGBoost算法进行分布式训练的最佳实践以及需要关注的一些问题。
基于Amazon Kinesis Video Stream Images构建视频流检测方案的集成与分析
基于云端实时视频智能检测的功能,在居家安防监控领域有着较高的价值。基于成本优化的考虑,我们希望采用图片作为智能检测的数据输入,因此通常需要从视频流中提取图片,但从视频流中抽取图片往往需要维护可扩展的计算资源来将视频转码为图片格式,这对没有的专业领域技术积累的团队来说是个不小的挑战。本文将详细介绍如何使用AWS新推出的Amazon Kinesis Video Streams Images来简化云端抽图。
Data-centric AI之样本工程
样本工程会涉及到建模思路的梳理,它不像特征工程那样还有一些典型的方法论,它更加艺术,更像是一种思维旅行,是一个需要反复进行脑中走查的过程。
Data-centric AI之特征工程(第三讲)
这两年我们观察到越来越多的算法工程师重视数据的特征工程,AI业界大佬吴恩达教授在2021年提出了从model-centric AI切换到data-centric AI的论调,我个人认为data-centric AI的三个核心就是特征工程,样本工程和数据集质量(本系列文章将围绕这三个核心来介绍)。
Data-centric AI之特征工程(第二讲)
这两年我们观察到越来越多的算法工程师重视数据的特征工程,AI业界大佬吴恩达教授在2021年提出了从model-centric AI切换到data-centric AI的论调,我个人认为data-centric AI的三个核心就是特征工程,样本工程和数据集质量(本系列文章将围绕这三个核心来介绍)。
Data-centric AI之特征工程(第一讲)
这两年我们观察到越来越多的算法工程师重视数据的特征工程,AI业界大佬吴恩达教授在2021年提出了从model-centric AI切换到data-centric AI的论调,我个人认为data-centric AI的三个核心就是特征工程,样本工程和数据集质量(本系列文章将围绕这三个核心来介绍)。
带你SSH到Amazon SageMaker 训练实例一探究竟
带你SSH到Amazon SageMaker 训练实例一探究竟